Numerical Hermitian Yang-Mills connections and vector bundle stability in heterotic theories

被引:32
作者
Anderson, Lara B. [1 ]
Braun, Volker [2 ]
Karp, Robert L. [3 ]
Ovrut, Burt A. [1 ]
机构
[1] Univ Penn, Dept Phys, Philadelphia, PA 19104 USA
[2] Dublin Inst Adv Studies, Dublin 4, Ireland
[3] Virginia Polytech Inst & State Univ, Dept Phys, Blacksburg, VA 24061 USA
基金
美国国家科学基金会;
关键词
Superstrings and Heterotic Strings; Differential and Algebraic Geometry; Superstring Vacua; VACUUM CONFIGURATIONS; PROJECTIVE EMBEDDINGS; SCALAR CURVATURE; METRICS; MANIFOLDS;
D O I
10.1007/JHEP06(2010)107
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
A numerical algorithm is presented for explicitly computing the gauge connection on slope-stable holomorphic vector bundles on Calabi-Yau manifolds. To illustrate this algorithm, we calculate the connections on stable monad bundles defined on the K3 twofold and Quintic threefold. An error measure is introduced to determine how closely our algorithmic connection approximates a solution to the Hermitian Yang-Mills equations. We then extend our results by investigating the behavior of non slope-stable bundles. In a variety of examples, it is shown that the failure of these bundles to satisfy the Hermitian Yang-Mills equations, including field-strength singularities, can be accurately reproduced numerically. These results make it possible to numerically determine whether or not a vector bundle is slope-stable, thus providing an important new tool in the exploration of heterotic vacua.
引用
收藏
页数:45
相关论文
共 69 条
[1]   THE B-L/ELECTROWEAK HIERARCHY IN SMOOTH HETEROTIC COMPACTIFICATIONS [J].
Ambroso, Michael ;
Ovrut, Burt A. .
INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 2010, 25 (13) :2631-2677
[2]   The B-L/electroweak hierarchy in heterotic string and M-theory [J].
Ambroso, Michael ;
Ovrut, Burt A. .
JOURNAL OF HIGH ENERGY PHYSICS, 2009, (10)
[3]   Monad bundles in heterotic string compactifications [J].
Anderson, Lara ;
He, Yang-Hui ;
Lukas, Andre .
JOURNAL OF HIGH ENERGY PHYSICS, 2008, (07)
[4]   Heterotic compactification, an algorithmic approach [J].
Anderson, Lara B. ;
He, Yang-Hui ;
Lukas, Andre .
JOURNAL OF HIGH ENERGY PHYSICS, 2007, (07)
[5]   Yukawa textures from heterotic stability walls [J].
Anderson, Lara B. ;
Gray, James ;
Ovrut, Burt .
JOURNAL OF HIGH ENERGY PHYSICS, 2010, (05)
[6]   Yukawa Couplings in Heterotic Compactification [J].
Anderson, Lara B. ;
Gray, James ;
Grayson, Dan ;
He, Yang-Hui ;
Lukas, Andre .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2010, 297 (01) :95-127
[7]   Exploring positive monad bundles and a new heterotic standard model [J].
Anderson, Lara B. ;
Gray, James ;
He, Yang-Hui ;
Lukas, Andre .
JOURNAL OF HIGH ENERGY PHYSICS, 2010, (02)
[8]   Stability walls in heterotic theories [J].
Anderson, Lara B. ;
Gray, James ;
Lukas, Andre ;
Ovrut, Burt .
JOURNAL OF HIGH ENERGY PHYSICS, 2009, (09)
[9]   The edge of supersymmetry: Stability walls in heterotic theory [J].
Anderson, Lara B. ;
Gray, James ;
Lukas, Andre ;
Ovrut, Burt .
PHYSICS LETTERS B, 2009, 677 (3-4) :190-194
[10]  
ANDERSON LB, NUMERICAL C IN PRESS