LSTM-based Dead Reckoning Navigation for Autonomous Underwater Vehicles

被引:20
作者
Topini, Edoardo [1 ,2 ]
Topini, Alberto [1 ,2 ]
Franchi, Matteo [1 ,2 ]
Bucci, Alessandro [1 ,2 ]
Secciani, Nicola [1 ,2 ]
Ridolfi, Alessandro [1 ,2 ]
Allotta, Benedetto [1 ,2 ]
机构
[1] Univ Florence, Dept Ind Engn DIEF, Florence, Italy
[2] Interuniv Ctr Integrated Syst Marine Environm ISM, Florence, Italy
来源
GLOBAL OCEANS 2020: SINGAPORE - U.S. GULF COAST | 2020年
关键词
AUVs; Underwater Robotics; Autonomous Navigation; Deep Learning; Long Short-Term Memory Networks;
D O I
10.1109/IEEECONF38699.2020.9389379
中图分类号
U6 [水路运输]; P75 [海洋工程];
学科分类号
0814 ; 081505 ; 0824 ; 082401 ;
摘要
Autonomous Underwater Vehicles (AUVs) do need to be equipped with highly-accurate and robust navigation systems in order to perform challenging operations and complex missions. Nevertheless, since the Global Positioning System (GPS) is not a feasible, functional solution in the underwater scenario, the localization task is fulfilled by employing filtering techniques - as Extended Kalman Filter (EKF) and Unscented Kalman Filter (UKF) - or Dead Reckoning (DR) strategies. Even though the specific algorithm architecture may vary, such methodologies usually rely on the direct linear speed measurements provided by specialized and expensive sensors, such as the Doppler Velocity Log (DVL). Thus, DVL failures or fallacies alongside DVL-denied environments may arise as unexpected causes for a severe malfunction of the whole navigation system. Motivated by the aforementioned considerations and the outstanding performance of Long Short-Term Memory (LSTM) neural networks in time-series regression problems, an LSTM-based DR approach has been developed to estimate the surge and sway body-fixed frame velocities, without canonically employing the DVL sensor.
引用
收藏
页数:7
相关论文
共 21 条
[1]   A new AUV navigation system exploiting unscented Kalman filter [J].
Allotta, B. ;
Caiti, A. ;
Costanzi, R. ;
Fanelli, F. ;
Fenucci, D. ;
Meli, E. ;
Ridolfi, A. .
OCEAN ENGINEERING, 2016, 113 :121-132
[2]   A low cost autonomous underwater vehicle for patrolling and monitoring [J].
Allotta, Benedetto ;
Conti, Roberto ;
Costanzi, Riccardo ;
Fanelli, Francesco ;
Gelli, Jonathan ;
Meli, Enrico ;
Monni, Niccolo ;
Ridolfi, Alessandro ;
Rindi, Andrea .
PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART M-JOURNAL OF ENGINEERING FOR THE MARITIME ENVIRONMENT, 2017, 231 (03) :740-749
[3]   UKF-Based Navigation System for AUVs: Online Experimental Validation [J].
Costanzi, Riccardo ;
Fanelli, Francesco ;
Meli, Enrico ;
Ridolfi, Alessandro ;
Caiti, Andrea ;
Allotta, Benedetto .
IEEE JOURNAL OF OCEANIC ENGINEERING, 2019, 44 (03) :633-641
[4]   An Attitude Estimation Algorithm for Mobile Robots Under Unknown Magnetic Disturbances [J].
Costanzi, Riccardo ;
Fanelli, Francesco ;
Monni, Niccolo ;
Ridolfi, Alessandro ;
Allotta, Benedetto .
IEEE-ASME TRANSACTIONS ON MECHATRONICS, 2016, 21 (04) :1900-1911
[5]  
Fanelli F., 2020, THESIS
[6]  
Ferri G., 2017, OCEANS 2017 ABERDEEN
[7]  
Fossen T, 1994, Guidance and Control of Ocean Vehicles
[8]   A forward-looking SONAR and dynamic model-based AUV navigation strategy: Preliminary validation with FeelHippo AUV [J].
Franchi, Matteo ;
Ridolfi, Alessandro ;
Pagliai, Marco .
OCEAN ENGINEERING, 2020, 196
[9]  
Hochreiter S., 1997, Neural Computation, V9, P1735
[10]  
Kalman R. E., 1960, J BASIC ENG, V82, P35, DOI [10.1115/1.3662552, DOI 10.1115/1.3662552]