Perfect fluid space-times whose energy-momentum tensor is conformal Killing

被引:38
作者
Sharma, Ramesh [1 ]
Ghosh, Amalendu [2 ]
机构
[1] Univ New Haven, West Haven, CT 06516 USA
[2] Krishnagar Govt Coll, Krishnanagar 741101, W Bengal, India
关键词
GENERAL-RELATIVITY;
D O I
10.1063/1.3319562
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We show that the energy-momentum tensor T of an expanding perfect fluid space-time (M, g) is a nontrivial conformal Killing tensor if and only if M is shear-free, vorticity-free, and satisfies certain energy and force equations. In particular, if T is conformal Killing, we show that the perfect fluid is stationary and its energy-density and pressure are constant. (C) 2010 American Institute of Physics. [doi: 10.1063/1.3319562]
引用
收藏
页数:5
相关论文
共 9 条
[1]  
BANERJEE A, 1979, ACTA PHYS POL B, V10, P3
[2]  
Hawking S.W., 1973, LARGE SCALE STRUCTUR
[3]   QUADRATIC FIRST INTEGRAL FOR CHARGED-PARTICLE ORBITS IN CHARGED KERR SOLUTION [J].
HUGHSTON, LP ;
WALKER, M ;
SOMMERS, P ;
PENROSE, R .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1972, 27 (04) :303-&
[4]   Conformal Yano-Killing tensor for the Kerr metric and conserved quantities [J].
Jezierski, J ;
Lukasik, M .
CLASSICAL AND QUANTUM GRAVITY, 2006, 23 (09) :2895-2918
[5]   VORTICITY-FREE AND SHEAR-FREE SPACE-TIME IN GENERAL-RELATIVITY [J].
MAITI, SR .
GENERAL RELATIVITY AND GRAVITATION, 1984, 16 (03) :297-303
[6]   METRIC OF A ROTATING CHARGED MASS [J].
NEWMAN, ET ;
COUCH, E ;
CHINNAPARED, K ;
EXTON, A ;
PRAKASH, A ;
TORRENCE, R .
JOURNAL OF MATHEMATICAL PHYSICS, 1965, 6 (06) :918-+
[7]  
Tachibana S.-i., 1969, Tohoku Math. J., V21, P56
[8]  
Wald R.M., 1984, GEN RELAT GRAVIT, DOI 10.7208/chicago/9780226870373.001.0001
[9]   ON QUADRATIC FIRST INTEGRALS OF GEODESIC EQUATIONS FOR TYPE 22 SPACETIMES [J].
WALKER, M ;
PENROSE, R .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1970, 18 (04) :265-+