A secreted effector protein (SNE1) from Phytophthora infestans is a broadly acting suppressor of programmed cell death

被引:103
作者
Kelley, Brendan S. [1 ]
Lee, Sang-Jik [1 ]
Damasceno, Cynthia M. B. [1 ]
Chakravarthy, Suma [2 ,4 ]
Kim, Byung-Dong [3 ]
Martin, Gregory B. [2 ,4 ]
Rose, Jocelyn K. C. [1 ]
机构
[1] Cornell Univ, Dept Plant Biol, Ithaca, NY 14853 USA
[2] Cornell Univ, Dept Plant Pathol, Ithaca, NY 14853 USA
[3] Seoul Natl Univ, Ctr Plant Mol Genet & Breeding Res, Seoul 151921, South Korea
[4] Cornell Univ, Boyce Thompson Inst Plant Res, Ithaca, NY 14853 USA
基金
美国国家科学基金会; 美国农业部;
关键词
Phytophthora infestans; hemibiotroph; tomato; effector proteins; programmed cell death; HOST-TARGETING SIGNAL; DISEASE RESISTANCE; III EFFECTOR; GENE; AVIRULENCE; EXPRESSION; PATHOGENESIS; INFECTION; SYSTEM; PLANTS;
D O I
10.1111/j.1365-313X.2010.04160.x
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
P>Evasion or active suppression of host defenses are critical strategies employed by biotrophic phytopathogens and hemibiotrophs whose infection mechanism includes sequential biotrophic and necrotrophic stages. Although defense suppression by secreted effector proteins has been well studied in bacteria, equivalent systems in fungi and oomycetes are poorly understood. We report the characterization of SNE1 (suppressor of necrosis 1), a gene encoding a secreted protein from the hemibiotrophic oomycete Phytophthora infestans that is specifically expressed at the transcriptional level during biotrophic growth within the host plant tomato (Solanum lycopersicum). Using transient expression assays, we show that SNE1 suppresses the action of secreted cell death-inducing effectors from Phytophthora that are expressed during the necrotrophic growth phase, as well as programmed cell death mediated by a range of Avr-R protein interactions. We also report that SNE1 contains predicted NLS motifs and translocates to the plant nucleus in transient expression studies. A conceptual model is presented in which the sequential coordinated secretion of antagonistic effectors by P. infestans first suppresses, but then induces, host cell death, thereby providing a highly regulated means to control the transition from biotrophy to necrotrophy.
引用
收藏
页码:357 / 366
页数:10
相关论文
共 54 条
[1]   AvrPtoB: A bacterial type III effector that both elicits and suppresses programmed cell death associated with plant immunity [J].
Abramovitch, RB ;
Martin, GB .
FEMS MICROBIOLOGY LETTERS, 2005, 245 (01) :1-8
[2]   Strategies used by bacterial pathogens to suppress plant defenses [J].
Abramovitch, RB ;
Martin, GB .
CURRENT OPINION IN PLANT BIOLOGY, 2004, 7 (04) :356-364
[3]   Pseudomonas type III effector AvrPtoB induces plant disease susceptibility by inhibition of host programmed cell death [J].
Abramovitch, RB ;
Kim, YJ ;
Chen, SR ;
Dickman, MB ;
Martin, GB .
EMBO JOURNAL, 2003, 22 (01) :60-69
[4]   Type III secretion system effector proteins: Double agents in bacterial disease and plant defense [J].
Alfano, JR ;
Collmer, A .
ANNUAL REVIEW OF PHYTOPATHOLOGY, 2004, 42 :385-414
[5]   An ancestral oomycete locus contains late blight avirulence gene Avr3a, encoding a protein that is recognized in the host cytoplasm [J].
Armstrong, MR ;
Whisson, SC ;
Pritchard, L ;
Bos, JIB ;
Venter, E ;
Avrova, AO ;
Rehmany, AP ;
Böhme, U ;
Brooks, K ;
Cherevach, I ;
Hamlin, N ;
White, B ;
Frasers, A ;
Lord, A ;
Quail, MA ;
Churcher, C ;
Hall, N ;
Berriman, M ;
Huang, S ;
Kamoun, S ;
Beynon, JL ;
Birch, PRJ .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2005, 102 (21) :7766-7771
[6]   Agrobacterium transient expression system as a tool for the isolation of disease resistance genes:: application to the Rx2 locus in potato [J].
Bendahmane, A ;
Querci, M ;
Kanyuka, K ;
Baulcombe, DC .
PLANT JOURNAL, 2000, 21 (01) :73-81
[7]  
Bhattacharjee Souvik, 2006, PLoS Pathogens, V2, DOI 10.1371/journal.ppat.0020050
[8]   Trafficking arms: oomycete effectors enter host plant cells [J].
Birch, PRJ ;
Rehmany, AP ;
Pritchard, L ;
Kamoun, S ;
Beynon, JL .
TRENDS IN MICROBIOLOGY, 2006, 14 (01) :8-11
[9]   The C-terminal half of Phytophthora infestans RXLR effector AVR3a is sufficient to trigger R3a-mediated hypersensitivity and suppress INF1-induced cell death in Nicotiana benthamiana [J].
Bos, Jorunn I. B. ;
Kanneganti, Thirumala-Devi ;
Young, Carolyn ;
Cakir, Cahid ;
Huitema, Edgar ;
Win, Joe ;
Armstrong, Miles R. ;
Birch, Paul R. J. ;
Kamoun, Sophien .
PLANT JOURNAL, 2006, 48 (02) :165-176
[10]   Host-microbe interactions: Shaping the evolution of the plant immune response [J].
Chisholm, ST ;
Coaker, G ;
Day, B ;
Staskawicz, BJ .
CELL, 2006, 124 (04) :803-814