Sieve estimation for the proportional-odds failure-time regression model with interval censoring

被引:158
作者
Huang, J [1 ]
Rossini, AJ [1 ]
机构
[1] UNIV S CAROLINA,DEPT STAT,COLUMBIA,SC 29208
关键词
constrained maximization; information; isotonic regression; maximum likelihood estimate; profile likelihood; HAZARDS MODEL;
D O I
10.2307/2965559
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Estimation of the proportional-odds failure-time regression model with interval censoring is considered. Conditions that allow for positive information for the regression parameter are discussed. The efficient score is characterized by a Fredholm equation of the second kind. The sieve maximum likelihood estimator for the finite-dimensional regression parameter Is shown to be asymptotically normal with root n convergence rate and to achieve the information bound. Data analysis and simulations assist in clarifying our thoughts regarding the choice of sieve for finite-sample problems.
引用
收藏
页码:960 / 967
页数:8
相关论文
共 14 条
[1]   COX REGRESSION-MODEL FOR COUNTING-PROCESSES - A LARGE SAMPLE STUDY [J].
ANDERSEN, PK ;
GILL, RD .
ANNALS OF STATISTICS, 1982, 10 (04) :1100-1120
[2]  
Aragon J., 1992, Journal of Computational and Graphical Statistics, V1, P129
[3]  
Bennett S, 1983, Stat Med, V2, P273, DOI 10.1002/sim.4780020223
[4]  
COX DR, 1972, J R STAT SOC B, V34, P187
[5]  
DINSE GE, 1983, APPL STAT, V32, P236
[6]   A PROPORTIONAL HAZARDS MODEL FOR INTERVAL-CENSORED FAILURE TIME DATA [J].
FINKELSTEIN, DM .
BIOMETRICS, 1986, 42 (04) :845-854
[7]   A SEMIPARAMETRIC MODEL FOR REGRESSION-ANALYSIS OF INTERVAL-CENSORED FAILURE TIME DATA [J].
FINKELSTEIN, DM ;
WOLFE, RA .
BIOMETRICS, 1985, 41 (04) :933-945
[8]  
Huang J, 1996, ANN STAT, V24, P540
[9]  
NIELSEN GG, 1992, SCAND J STAT, V19, P25
[10]  
Pettitt A.N., 1984, Applied Statistics, V33, P169