Oscillatory instabilities of standing waves in one-dimensional nonlinear lattices

被引:27
|
作者
Morgante, AM [1 ]
Johansson, M [1 ]
Kopidakis, G [1 ]
Aubry, S [1 ]
机构
[1] CEA Saclay, CNRS, Leon Brillouin Lab, F-91191 Gif Sur Yvette, France
关键词
D O I
10.1103/PhysRevLett.85.550
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In one-dimensional anharmonic lattices, we construct nonlinear standing waves (SWs) reducing to harmonic SWs at small amplitude. For SWs with spatial periodicity incommensurate with the lattice period, a transition by breaking of analyticity versus wave amplitude is observed. As a consequence of the discreteness, oscillatory linear instabilities, persisting for arbitrarily small amplitude in infinite lattices, appear for all wave numbers Q not equal 0, pi. Incommensurate analytic SWs with \Q\ > pi/2 may however appear as "quasistable," as their instability growth rate is of higher order.
引用
收藏
页码:550 / 553
页数:4
相关论文
共 50 条
  • [1] Discrete embedded solitary waves and breathers in one-dimensional nonlinear lattices
    Palmero, Faustino
    Molina, Mario, I
    Cuevas-Maraver, Jesus
    Kevrekidis, Panayotis G.
    PHYSICS LETTERS A, 2022, 425
  • [2] Thermodynamics of one-dimensional nonlinear lattices
    Likhachev, V. N.
    Astakhova, T. Yu.
    Vinogradov, G. A.
    RUSSIAN JOURNAL OF PHYSICAL CHEMISTRY B, 2009, 3 (04) : 517 - 528
  • [3] Thermodynamics of one-dimensional nonlinear lattices
    V. N. Likhachev
    T. Yu. Astakhova
    G. A. Vinogradov
    Russian Journal of Physical Chemistry B, 2009, 3 : 517 - 528
  • [4] Energy relaxation in nonlinear one-dimensional lattices
    Reigada, R.
    Sarmiento, A.
    Lindenberg, Katja
    Physical Review E - Statistical, Nonlinear, and Soft Matter Physics, 2001, 64 (6 II): : 1 - 066608
  • [5] Parametric simultons in one-dimensional nonlinear lattices
    Huang, GX
    CHINESE PHYSICS, 2001, 10 (06): : 523 - 530
  • [6] Energy relaxation in nonlinear one-dimensional lattices
    Reigada, R
    Sarmiento, A
    Lindenberg, K
    PHYSICAL REVIEW E, 2001, 64 (06):
  • [7] GEOMETRICALLY INDUCED NONLINEAR DYNAMICS IN ONE-DIMENSIONAL LATTICES
    Hamilton, M.
    Bonfim, O. F. De Alcantara
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2008, 18 (08): : 2471 - 2476
  • [8] ONE-DIMENSIONAL NONLINEAR WAVES IN A DISSIPATIVE GAS
    ROMILLY, N
    ACUSTICA, 1971, 25 (04): : 247 - &
  • [9] Nonlinear one-dimensional guided wedge waves
    Lomonosov, Alexey M.
    Pupyrev, Pavel D.
    Hess, Peter
    Mayer, Andreas P.
    PHYSICAL REVIEW B, 2015, 92 (01)
  • [10] NONLINEAR INTERNAL WAVES IN A ONE-DIMENSIONAL CHANNEL
    ARTALE, V
    LEVI, D
    NUOVO CIMENTO DELLA SOCIETA ITALIANA DI FISICA C-GEOPHYSICS AND SPACE PHYSICS, 1987, 10 (01): : 61 - 76