Existence of a global smooth solution for a degenerate Goursat problem of gas dynamics

被引:99
作者
Dai, ZH [1 ]
Zhang, T
机构
[1] Inst Appl Phys & Computat Math, Lab Computat Phys, Beijing 100080, Peoples R China
[2] Acad Sinica, Inst Math, Beijing 100080, Peoples R China
关键词
D O I
10.1007/s002050000113
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The Goursat problem of a mixed type equation (P - xi (2))P(xi xi) - 2 xi etaP(xi eta) + (P - eta (2)) P(eta eta) + 1/P (xi P(xi) + eta P(eta))(2) - 2(xi P(xi) + etaP(eta)) = 0, P greater than or equal to 0, is considered. At the ends of its supports we have P = 0, which means it is degenerate hyperbolic. We prove the global existence of a smooth solution to the degenerate Goursat problem up to a boundary where P = 0. This problem comes from the expansion of a wedge of gas with constant velocity into vacuum, in two-dimensional pressure-gradient equations in gas dynamics, where P is the pressure and P = 0 means vacuum.
引用
收藏
页码:277 / 298
页数:22
相关论文
共 12 条
[1]  
AGARWAL RK, 1994, CMAS, P155
[2]  
[Anonymous], 1994, RES APPL MATH
[3]  
[Anonymous], 1985, DUKE U MATH SERIES
[4]  
[Anonymous], ACTA SCI NATUR JILIN
[5]   Explicit construction of measure solutions of Cauchy problem for transportation equations [J].
Cheng, SZ ;
Li, JQ ;
Zhang, T .
SCIENCE IN CHINA SERIES A-MATHEMATICS PHYSICS ASTRONOMY, 1997, 40 (12) :1287-1299
[6]  
COURANT R, 1955, ANN MATH PURE APPL, V40, P161
[7]  
Hartman P., 1952, AM J MATH, V74, P834, DOI 10.2307/2372229
[8]  
LI J., 1998, 2 DIMENSIONAL RIEMAN
[9]  
Li Y., 1985, SCI CHINA SER A, V8, P1024
[10]  
SHENG WC, 1999, MEMOIRS AMS