DUALITY FOR A CLASS OF NONSMOOTH SEMI-INFINITE MULTIOBJECTIVE FRACTIONAL OPTIMIZATION PROBLEMS

被引:0
作者
Singh, Vivek [1 ]
Jayswal, Anurag [2 ]
Stancu-Minasian, Ioan [3 ]
Rusu-Stancu, Andreea Madalina [3 ]
机构
[1] Manipal Univ Jaipur, Jaipur, Rajasthan, India
[2] Indian Inst Technol, Indian Sch Mines, Dhanbad 826004, Bihar, India
[3] Romanian Acad, Gheorghe Mihoc Caius Iacob Inst Math Stat & Appl, 13 Septembrie St 13, Bucharest 050711, Romania
来源
UNIVERSITY POLITEHNICA OF BUCHAREST SCIENTIFIC BULLETIN-SERIES A-APPLIED MATHEMATICS AND PHYSICS | 2022年 / 84卷 / 02期
关键词
Limiting subdifferential; generalized convex function; strongly isolated solution; positively properly efficient solution; efficient solution; semi-infinite multiobjective fractional programming; optimality conditions; OPTIMALITY CONDITIONS; PROPER EFFICIENCIES;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we continue the effort of Singh et al. [ V. Singh, A. Jayswal, I. Stancu-Minasian and A.M. Rusu-Stancu, Isolated and proper efficiencies for semi-infinite multiobjective fractional problems, U.P.B. Sci. Bull., Series A, Vol. 83, Iss. 3, 2021, pp. 111-124 to discuss duality results for a nonsmooth semi-infinite multiobjective fractional optimization problem with infinite number of inequality constraints by employing some advanced tools of variational analysis and generalized differentiation. We propose a Mond-Weir dual problem and prove weak/strong duality theorems for local properly efficient solutions under generalized convexity. In order to justify the significance of obtained results we consider a numerical example.
引用
收藏
页码:61 / 68
页数:8
相关论文
共 50 条
[21]   Optimality and duality for nonsmooth multiobjective optimization problems [J].
Kwan Deok Bae ;
Do Sang Kim .
Journal of Inequalities and Applications, 2013
[22]   Optimality and duality for nonsmooth multiobjective optimization problems [J].
Bae, Kwan Deok ;
Kim, Do Sang .
JOURNAL OF INEQUALITIES AND APPLICATIONS, 2013,
[23]   Efficiency conditions and duality for multiobjective semi-infinite programming problems on Hadamard manifolds [J].
Upadhyay, Balendu Bhooshan ;
Ghosh, Arnav ;
Treanta, Savin .
JOURNAL OF GLOBAL OPTIMIZATION, 2024, 89 (03) :723-744
[24]   Normal regularity for the feasible set of semi-infinite multiobjective optimization problems with applications [J].
Chuong, Thai Doan ;
Kim, Do Sang .
ANNALS OF OPERATIONS RESEARCH, 2018, 267 (1-2) :81-99
[25]   On quasi approximate solutions for nonsmooth robust semi-infinite optimization problems [J].
Khantree, Chanoksuda ;
Wangkeeree, Rabian .
CARPATHIAN JOURNAL OF MATHEMATICS, 2019, 35 (03) :417-426
[26]   Necessary conditions for nonsmooth multiobjective semi-infinite problems using Michel–Penot subdifferential [J].
Caristi G. ;
Ferrara M. .
Decisions in Economics and Finance, 2017, 40 (1-2) :103-113
[27]   Saddle Point Criteria in Nonsmooth Semi-Infinite Minimax Fractional Programming Problems [J].
Mishra, S. K. ;
Singh, Yadvendra ;
Verma, R. U. .
JOURNAL OF SYSTEMS SCIENCE & COMPLEXITY, 2018, 31 (02) :446-462
[28]   ON APPROXIMATE POSITIVELY PROPERLY EFFICIENT SOLUTIONS IN NONSMOOTH SEMI-INFINITE MULTIOBJECTIVE OPTIMIZATION PROBLEMS WITH DATA UNCERTAINTY [J].
Pham, Thanh-Hung .
Journal of Applied and Numerical Optimization, 2024, 6 (02) :271-289
[29]   Slater CQ, optimality and duality for quasiconvex semi-infinite optimization problems [J].
Kanzi, Nader ;
Soleimani-damaneh, Majid .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2016, 434 (01) :638-651
[30]   On Isolated/Properly Efficient Solutions in Nonsmooth Robust Semi-infinite Multiobjective Optimization [J].
Thanh-Hung Pham .
Bulletin of the Malaysian Mathematical Sciences Society, 2023, 46