Interfacial Thermal Conductance and Thermal Rectification of Hexagonal BCnN/Graphene In-Plane Heterojunctions

被引:49
作者
Zhang, Yingyan [1 ]
Pei, Qing-Xiang [2 ]
Wang, Chien-Ming [3 ]
Yang, Chunhui [1 ]
Zhang, Yong-Wei [2 ]
机构
[1] Western Sydney Univ, Sch Comp Engn & Math, Penrith, NSW 2751, Australia
[2] ASTAR, Inst High Performance Comp, Singapore 138632, Singapore
[3] Univ Queensland, Sch Civil Engn, St Lucia, Qld 4072, Australia
关键词
BORON-NITRIDE; CARBON NANOTUBES; POLYANILINE C3N; GRAPHENE; CONDUCTIVITY; MONOLAYER; HETEROSTRUCTURES; NANOSHEETS; TRANSPORT;
D O I
10.1021/acs.jpcc.8b08015
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Graphene and hexagonal BCnN (n = 0, 1, 2), possessing a similar honeycomb crystal structure, can easily form in-plane BCnN/graphene heterojunctions, which exhibit many unique physical properties. In this paper, we investigate the interfacial thermal conductance and thermal rectification in three hexagonal BCnN/graphene heterostructures by using nonequilibrium molecular dynamics simulations. It is found that the interfacial bonding strength at the BCnN/graphene interfaces plays a vital role in the interfacial thermal conduction. Among these three heterostructures, BCN/graphene heterojunction exhibits the highest interfacial thermal conductance due to its stronger interfacial bonding. It is also found that thermal rectification occurs in the heterostructures with the hexagonal boron nitride/graphene heterojunction having the highest thermal rectification factor. Remarkably, the interfacial thermal conductance of these heterojunctions can be tuned effectively by defect engineering. The present study reveals valuable insights into the thermal transport behavior of BCnN/graphene heterostructures, which will be useful for future application of BCnN/graphene heterostructures in electronic and thermal devices.
引用
收藏
页码:22783 / 22789
页数:7
相关论文
共 46 条
[1]  
[Anonymous], 2012, PHYS REV B
[2]   Graphene-like Boron-Carbon-Nitrogen Monolayers [J].
Beniwal, Sumit ;
Hooper, James ;
Miller, Daniel P. ;
Costa, Paulo S. ;
Chen, Gang ;
Liu, Shih-Yuan ;
Dowben, Peter A. ;
Sykes, E. Charles H. ;
Zurek, Eva ;
Enders, Axel .
ACS NANO, 2017, 11 (03) :2486-2493
[3]   Solid-state thermal rectifier [J].
Chang, C. W. ;
Okawa, D. ;
Majumdar, A. ;
Zettl, A. .
SCIENCE, 2006, 314 (5802) :1121-1124
[4]   Thermal rectification and negative differential thermal resistance behaviors in graphene/hexagonal boron nitride heterojunction [J].
Chen, Xue-Kun ;
Xie, Zhong-Xiang ;
Zhou, Wu-Xing ;
Tang, Li-Ming ;
Chen, Ke-Qiu .
CARBON, 2016, 100 :492-500
[5]   Manipulating the Thermal Conductivity of Monolayer MoS2 via Lattice Defect and Strain Engineering [J].
Ding, Zhiwei ;
Pei, Qing-Xiang ;
Jiang, Jin-Wu ;
Zhang, Yong-Wei .
JOURNAL OF PHYSICAL CHEMISTRY C, 2015, 119 (28) :16358-16365
[6]   Thermal Conductivity of Graphene-hBN Superlattice Ribbons [J].
Felix, Isaac M. ;
Pereira, Luiz Felipe C. .
SCIENTIFIC REPORTS, 2018, 8
[7]   Temperature-triggered chemical switching growth of in-plane and vertically stacked graphene-boron nitride heterostructures [J].
Gao, Teng ;
Song, Xiuju ;
Du, Huiwen ;
Nie, Yufeng ;
Chen, Yubin ;
Ji, Qingqing ;
Sun, Jingyu ;
Yang, Yanlian ;
Zhang, Yanfeng ;
Liu, Zhongfan .
NATURE COMMUNICATIONS, 2015, 6
[8]   The rise of graphene [J].
Geim, A. K. ;
Novoselov, K. S. .
NATURE MATERIALS, 2007, 6 (03) :183-191
[9]   Two-dimensional and three-dimensional hybrid assemblies based on graphene oxide and other layered structures: A carbon science perspective [J].
Guerrero-Bermea, Cynthia ;
Rajukumar, Lakshmy Pulickal ;
Dasgupta, Archi ;
Lei, Yu ;
Hashimoto, Yoshio ;
Sepulveda-Guzman, Selene ;
Cruz-Silva, Rodolfo ;
Endo, Morinobu ;
Terrones, Mauricio .
CARBON, 2017, 125 :437-453
[10]   Monolayer and bilayer polyaniline C3N: two-dimensional semiconductors with high thermal conductivity [J].
Hong, Yang ;
Zhang, Jingchao ;
Zeng, Xiao Cheng .
NANOSCALE, 2018, 10 (09) :4301-4310