Beyond Tolerance Factor: Using Deep Learning for Prediction Formability of ABX3 Perovskite Structures

被引:7
作者
Fedorovskiy, Alexander E. [1 ]
Queloz, Valentin I. E. [1 ]
Nazeeruddin, Mohammad Khaja [1 ]
机构
[1] Ecole Polytech Fed Lausanne EPFL, Inst Chem Sci & Engn, Grp Mol Engn Funct Mat, EPFL ISIC Valais, CH-1951 Sion, Switzerland
基金
瑞士国家科学基金会;
关键词
crystal structures; deep learning; formability prediction; perovskites; tolerance factor;
D O I
10.1002/adts.202100021
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Deep learning (DL) is a modern powerful instrument for multiple purposes, including classification. In this study, this technique is applied to the task of perovskites formability. A commonly known perovskite dataset is used to try to make an instrument superior to the 'classic' geometric approach. The authors found that the resulting models allow the finding of inaccuracies in the data and can successfully forecast perovskite formability with an accuracy of over 98% for the best case.
引用
收藏
页数:6
相关论文
共 32 条
[1]  
[Anonymous], 2016, PROC IEEE 8 INT C IN
[2]  
[Anonymous], 2017, DEEP LEARNING: A REVIEW, DOI [10.20944/preprints201810.0218.v1, DOI 10.20944]
[3]   Frontiers, opportunities, and challenges in perovskite solar cells: A critical review [J].
Ansari, Mohammed Istafaul Haque ;
Qurashi, Ahsanulhaq ;
Nazeeruddin, Mohammad Khaja .
JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY C-PHOTOCHEMISTRY REVIEWS, 2018, 35 :1-24
[4]   Predictions of new ABO3 perovskite compounds by combining machine learning and density functional theory [J].
Balachandran, Prasanna V. ;
Emery, Antoine A. ;
Gubernatis, James E. ;
Lookman, Turab ;
Wolverton, Chris ;
Zunger, Alex .
PHYSICAL REVIEW MATERIALS, 2018, 2 (04)
[5]   Covalent radii revisited [J].
Cordero, Beatriz ;
Gomez, Veronica ;
Platero-Prats, Ana E. ;
Reves, Marc ;
Echeverria, Jorge ;
Cremades, Eduard ;
Barragan, Flavia ;
Alvarez, Santiago .
DALTON TRANSACTIONS, 2008, (21) :2832-2838
[6]   Deep learning for molecular design-a review of the state of the art [J].
Elton, Daniel C. ;
Boukouvalas, Zois ;
Fuge, Mark D. ;
Chung, Peter W. .
MOLECULAR SYSTEMS DESIGN & ENGINEERING, 2019, 4 (04) :828-849
[7]   Using deep neural network with small dataset to predict material defects [J].
Feng, Shuo ;
Zhou, Huiyu ;
Dong, Hongbiao .
MATERIALS & DESIGN, 2019, 162 :300-310
[8]   The geometric blueprint of perovskites [J].
Filip, Marina R. ;
Giustino, Feliciano .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2018, 115 (21) :5397-5402
[9]   The laws of crystal chemistry [J].
Goldschmidt, VM .
NATURWISSENSCHAFTEN, 1926, 14 :477-485
[10]   Machine Learning and Energy Minimization Approaches for Crystal Structure Predictions: A Review and New Horizons [J].
Graser, Jake ;
Kauwe, Steven K. ;
Sparks, Taylor D. .
CHEMISTRY OF MATERIALS, 2018, 30 (11) :3601-3612