Quasi-periodic and periodic solutions for coupled nonlinear Schrodinger equations of Manakov type

被引:70
作者
Christiansen, PL [1 ]
Eilbeck, JC
Enolskii, VZ
Kostov, NA
机构
[1] Tech Univ Denmark, Dept Math Modelling, DK-2800 Lyngby, Denmark
[2] Heriot Watt Univ, Dept Math, Edinburgh EH14 4AS, Midlothian, Scotland
[3] NASU, Inst Magnetism, Div Theoret Phys, UA-252142 Kiev, Ukraine
[4] Bulgarian Acad Sci, Inst Elect, BU-1784 Sofia, Bulgaria
来源
PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES | 2000年 / 456卷 / 2001期
关键词
periodic solutions; quasi-periodic solutions; Manakov system; coupled nonlinear Schrodinger equations;
D O I
10.1098/rspa.2000.0612
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
We consider travelling periodic and quasi-periodic wave solutions in coupled nonlinear Schrodinger equations. In fibre optics these equations can be used to model single-mode fibres with strong birefringence, and two-mode optical fibres. Recently these equations appear as a model describing pulse-pulse interactions in wavelength-division-multiplexed channels of optical fibre transmission systems. In some cases this model reduces to the integrable Manakov system (IMS). Two-phase quasi-periodic solutions for the IMS are given in terms of two-dimensional Kleinian functions. The reduction of quasi-periodic solutions to elliptic functions is discussed. New solutions are found in terms of generalized Hermite polynomials, which are associated with two-gap Treibich-Verdier potentials.
引用
收藏
页码:2263 / 2281
页数:19
相关论文
共 56 条
[1]   DARBOUX COORDINATES AND LIOUVILLE-ARNOLD INTEGRATION IN LOOP ALGEBRAS [J].
ADAMS, MR ;
HARNAD, J ;
HURTUBISE, J .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1993, 155 (02) :385-413
[2]  
AIRAULT H, 1977, COMMUN PURE APPL MAT, V30, P94
[3]  
AKER HF, 1897, ABELS THEOREM ALLIED
[4]  
ALFINITO E, 1995, PHYS REV E, V53, P3159
[5]  
[Anonymous], 1974, Sov. Phys. JETP
[6]  
BAKER H, 1907, MULTIPLY PERIODIC FU
[7]   INTEGRABLE QUARTIC POTENTIALS AND COUPLED KDV EQUATIONS [J].
BAKER, S ;
ENOLSKII, VZ ;
FORDY, AP .
PHYSICS LETTERS A, 1995, 201 (2-3) :167-174
[8]  
BELOKOLOS ED, 1994, ALGEBROGEOMETRICAL A
[9]  
BELOKOLOS ED, 1989, USP MAT NAUK, V44, P155
[10]  
Buchstaber V., 1997, REV MATH MATH PHYS, V10, P1