The congruence x1x2 ≡ x3x4 (mod m) and mean values of character sums

被引:16
作者
Cochrane, Todd [1 ]
Shi, Sanying [2 ]
机构
[1] Kansas State Univ, Dept Math, Manhattan, KS 66506 USA
[2] Tongji Univ, Dept Math, Shanghai 200092, Peoples R China
关键词
Congruences; Character sums; Moments; ORDER;
D O I
10.1016/j.jnt.2009.08.006
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For any positive integer m we obtain the asymptotic formula, vertical bar B boolean AND V'vertical bar = vertical bar B'vertical bar/phi(m) + O(8(nu(m))tau(m)(log m)(3)(log log m)(7) root vertical bar B vertical bar), for the number of solutions of the congruence x(1)x(2) equivalent to x(3)x(4) (mod m) with coordinates relatively prime to m in a box B of arbitrary size and position. We also obtain an upper bound for a fourth-order character sum moment, 1/phi(m) Sigma(chi not equal chi 0) vertical bar Sigma(a+b)(x=a+1) chi(x)vertical bar(4) << 8(nu(m))tau(m)(log m)(3)(log log m)(7) B-2. (C) 2009 Elsevier Inc. All rights reserved.
引用
收藏
页码:767 / 785
页数:19
相关论文
共 12 条
[1]   The congruence x(1)x(2)x(3)x(4) (mod p), the equation x(1)x(2)=x(3)x(4), and mean values of character sums [J].
Ayyad, A ;
Cochrane, T ;
Zheng, ZY .
JOURNAL OF NUMBER THEORY, 1996, 59 (02) :398-413
[2]   MEAN-VALUES OF CHARACTER SUMS [J].
BURGESS, DA .
MATHEMATIKA, 1986, 33 (65) :1-5
[3]   High order moments of character sums [J].
Cochrane, T ;
Zheng, ZY .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1998, 126 (04) :951-956
[4]   THE DIVISOR PROBLEM FOR ARITHMETIC PROGRESSIONS [J].
FRIEDLANDER, JB ;
IWANIEC, H .
ACTA ARITHMETICA, 1985, 45 (03) :273-277
[5]   The equation x1x2 = x3x4+λ in fields of prime order and applications [J].
Garaev, M. Z. ;
Garcia, V. C. .
JOURNAL OF NUMBER THEORY, 2008, 128 (09) :2520-2537
[6]  
HARMAN G, 1984, MATH P CAMBRIDGE PHI, V95, P383
[7]  
Iwaniec H., 2004, AMS C PUBLICATIONS, V53
[8]   MEAN-VALUES OF CHARACTER SUMS [J].
MONTGOMERY, HL ;
VAUGHAN, RC .
CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 1979, 31 (03) :476-487
[9]  
Shparlinski I., 2008, East-West J Math. Special, P197
[10]   Bounds of incomplete multiple Kloosterman sums [J].
Shparlinski, Igor E. .
JOURNAL OF NUMBER THEORY, 2007, 126 (01) :68-73