Approximate self-affine characterization of two-point rough surface statistics simulated by Eden algorithm

被引:6
作者
Vulkova, LA
Atanasov, IS
Yordanov, OI
机构
[1] Bulgarian Acad Sci, Inst Elect, BU-1784 Sofia, Bulgaria
[2] American Univ Bulgaria, Blagoevgrad 2700, Bulgaria
关键词
semi-empirical models and model calculations; surface structure; morphology; roughness; topography;
D O I
10.1016/S0042-207X(00)00164-0
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We study the self-affine properties of growing surfaces generated by using version A of the Eden model (R. Jullien and R, Botet, J Phys A:Math Gen 1985;18:2279). The analysis is based on two-point surface statistical quantities. A three-segmented spectral model is suggested and shown to be in agreement with the data related to the sample autocovariance function at all stages of the growth. (C) 2000 Elsevier Science Ltd. All rights reserved.
引用
收藏
页码:158 / 165
页数:8
相关论文
共 17 条
  • [1] ATANASOV IS, 1998, P NATO ADV RES WORKS, P291
  • [2] Barabasi A-Ls, 1995, FRACTAL CONCEPTS SUR, DOI [10.1017/CBO9780511599798, DOI 10.1017/CBO9780511599798]
  • [3] SELF-CONSISTENT APPROACH TO THE KARDAR-PARISI-ZHANG EQUATION
    BOUCHAUD, JP
    CATES, ME
    [J]. PHYSICAL REVIEW E, 1993, 47 (03) : R1455 - R1458
  • [4] Eden M., 1960, 4TH P BERK S MATH ST, VIV, P223
  • [5] SCALING OF THE ACTIVE ZONE IN THE EDEN PROCESS ON PERCOLATION NETWORKS AND THE BALLISTIC DEPOSITION MODEL
    FAMILY, F
    VICSEK, T
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1985, 18 (02): : L75 - L81
  • [6] PREPARATION OF ATOMICALLY SMOOTH SURFACES VIA SPUTTERING UNDER GLANCING INCIDENCE CONDITIONS
    HOLZWARTH, M
    WISSING, M
    SIMEONOVA, DS
    TZANEV, S
    SNOWDON, KJ
    YORDANOV, OI
    [J]. SURFACE SCIENCE, 1995, 331 : 1093 - 1098
  • [7] SCALING PROPERTIES OF THE SURFACE OF THE EDEN MODEL IN D = 2, 3, 4
    JULLIEN, R
    BOTET, R
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1985, 18 (12): : 2279 - 2287
  • [8] DYNAMIC SCALING OF GROWING INTERFACES
    KARDAR, M
    PARISI, G
    ZHANG, YC
    [J]. PHYSICAL REVIEW LETTERS, 1986, 56 (09) : 889 - 892
  • [9] KRUG J, 1987, PHYS REV A, V36, P5456
  • [10] Mandelbrot BB., 1977, FRACTAL GEOMETRY NAT