On geometrically transitive Hopf algebroids

被引:9
作者
El Kaoutit, Laiachi [1 ]
机构
[1] Univ Granada, Dept Algebra & IEMath Granada, Fac Educ Econ & Tecnol Ceuta, Cortadura Valle S-N, E-51001 Ceuta, Spain
关键词
GROUPOIDS; SHEAVES;
D O I
10.1016/j.jpaa.2017.12.019
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper contributes to the characterization of a certain class of commutative Hopf algebroids. It is shown that a commutative flat Hopf algebroid with a non zero base ring and a nonempty character groupoid is geometrically transitive if and only if any base change morphism is a weak equivalence (in particular, if any extension of the base ring is Landweber exact), if and only if any trivial bundle is a principal bi-bundle, and if and only if any two objects are fpqc locally isomorphic. As a consequence, any two isotropy Hopf algebras of a geometrically transitive Hopf algebroid (as above) are weakly equivalent. Furthermore, the character groupoid is transitive and any two isotropy Hopf algebras are conjugated. Several other characterizations of these Hopf algebroids in relation to transitive groupoids are also given. (C) 2017 Elsevier B.V. All rights reserved.
引用
收藏
页码:3483 / 3520
页数:38
相关论文
共 28 条
[1]   A functorial formalism for quasi-coherent sheaves on a geometric stack [J].
Alonso Tarrio, Leovigildo ;
Jeremias Lopez, Ana ;
Perez Rodriguez, Marta ;
Vale Gonsalves, Maria J. .
EXPOSITIONES MATHEMATICAE, 2015, 33 (04) :452-501
[2]  
[Anonymous], 1971, GRUNDLEHREN MATH WIS
[3]  
[Anonymous], Lecture Notes in Mathematics
[4]  
[Anonymous], 1971, NOSTRAND REINHOLD MA
[5]  
[Anonymous], 1970, Geometrie algebrique, generalites, groupes commutatifs
[6]  
[Anonymous], LNM
[7]   FROM GROUPS TO GROUPOIDS - A BRIEF SURVEY [J].
BROWN, R .
BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 1987, 19 :113-134
[8]   NONCOMMUTATIVE TANNAKIAN THEORY [J].
BRUGUIERES, A .
COMMUNICATIONS IN ALGEBRA, 1994, 22 (14) :5817-5860
[9]   Galois comodules [J].
Brzezinski, T .
JOURNAL OF ALGEBRA, 2005, 290 (02) :503-537
[10]  
Brzezinski Tomasz, 2003, London Mathematical Society Lecture Note Series, V309