Towards a genome-scale kinetic model of cellular metabolism

被引:94
作者
Smallbone, Kieran [1 ,2 ]
Simeonidis, Evangelos [1 ,3 ]
Swainston, Neil [1 ,4 ]
Mendes, Pedro [1 ,4 ,5 ]
机构
[1] Manchester Interdisciplinary Bioctr, Manchester Ctr Integrat Syst Biol, Manchester M1 7DN, Lancs, England
[2] Univ Manchester, Sch Math, Manchester M13 9PL, Lancs, England
[3] Univ Manchester, Sch Chem Engn & Analyt Sci, Manchester M13 9PL, Lancs, England
[4] Univ Manchester, Sch Comp Sci, Manchester M13 9PL, Lancs, England
[5] Virginia Tech, Virginia Bioinformat Inst, Blacksburg, VA 24061 USA
基金
英国工程与自然科学研究理事会; 英国生物技术与生命科学研究理事会;
关键词
SEMANTIC WEB; RECONSTRUCTION; SIMULATION; MARKUP;
D O I
10.1186/1752-0509-4-6
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Background: Advances in bioinformatic techniques and analyses have led to the availability of genome-scale metabolic reconstructions. The size and complexity of such networks often means that their potential behaviour can only be analysed with constraint-based methods. Whilst requiring minimal experimental data, such methods are unable to give insight into cellular substrate concentrations. Instead, the long-term goal of systems biology is to use kinetic modelling to characterize fully the mechanics of each enzymatic reaction, and to combine such knowledge to predict system behaviour. Results: We describe a method for building a parameterized genome-scale kinetic model of a metabolic network. Simplified linlog kinetics are used and the parameters are extracted from a kinetic model repository. We demonstrate our methodology by applying it to yeast metabolism. The resultant model has 956 metabolic reactions involving 820 metabolites, and, whilst approximative, has considerably broader remit than any existing models of its type. Control analysis is used to identify key steps within the system. Conclusions: Our modelling framework may be considered a stepping-stone toward the long-term goal of a fully-parameterized model of yeast metabolism. The model is available in SBML format from the BioModels database (BioModels ID: MODEL1001200000) and at http://www.mcisb.org/resources/genomescale/.
引用
收藏
页数:9
相关论文
共 29 条
[1]   High-throughput classification of yeast mutants for functional genomics using metabolic footprinting [J].
Allen, J ;
Davey, HM ;
Broadhurst, D ;
Heald, JK ;
Rowland, JJ ;
Oliver, SG ;
Kell, DB .
NATURE BIOTECHNOLOGY, 2003, 21 (06) :692-696
[2]   The European Bioinformatics Institute's data resources: towards systems biology [J].
Brooksbank, C ;
Cameron, G ;
Thornton, J .
NUCLEIC ACIDS RESEARCH, 2005, 33 :D46-D53
[3]   Enhancement of the chemical semantic web through the use of InChI identifiers [J].
Coles, SJ ;
Day, NE ;
Murray-Rust, P ;
Rzepa, HS ;
Zhang, Y .
ORGANIC & BIOMOLECULAR CHEMISTRY, 2005, 3 (10) :1832-1834
[4]   Identifying constraints that govern cell behavior: A key to converting conceptual to computational models in biology? [J].
Covert, MW ;
Famili, I ;
Palsson, BO .
BIOTECHNOLOGY AND BIOENGINEERING, 2003, 84 (07) :763-772
[5]   Reconstruction and validation of Saccharomyces cerevisiae iND750, a fully compartmentalized genome-scale metabolic model [J].
Duarte, NC ;
Herrgård, MJ ;
Palsson, BO .
GENOME RESEARCH, 2004, 14 (07) :1298-1309
[6]   Genome-scale reconstruction of the Saccharomyces cerevisiae metabolic network [J].
Förster, J ;
Famili, I ;
Fu, P ;
Palsson, BO ;
Nielsen, J .
GENOME RESEARCH, 2003, 13 (02) :244-253
[7]   Translating biochemical network models between different kinetic formats [J].
Hadlich, Frieder ;
Noack, Stephan ;
Wiechert, Wolfgang .
METABOLIC ENGINEERING, 2009, 11 (02) :87-100
[8]   LINEAR STEADY-STATE TREATMENT OF ENZYMATIC CHAINS - GENERAL PROPERTIES, CONTROL AND EFFECTOR STRENGTH [J].
HEINRICH, R ;
RAPOPORT, TA .
EUROPEAN JOURNAL OF BIOCHEMISTRY, 1974, 42 (01) :89-95
[9]   A consensus yeast metabolic network reconstruction obtained from a community approach to systems biology [J].
Herrgard, Markus J. ;
Swainston, Neil ;
Dobson, Paul ;
Dunn, Warwick B. ;
Arga, K. Yalcin ;
Arvas, Mikko ;
Bluethgen, Nils ;
Borger, Simon ;
Costenoble, Roeland ;
Heinemann, Matthias ;
Hucka, Michael ;
Le Novere, Nicolas ;
Li, Peter ;
Liebermeister, Wolfram ;
Mo, Monica L. ;
Oliveira, Ana Paula ;
Petranovic, Dina ;
Pettifer, Stephen ;
Simeonidis, Evangelos ;
Smallbone, Kieran ;
Spasic, Irena ;
Weichart, Dieter ;
Brent, Roger ;
Broomhead, David S. ;
Westerhoff, Hans V. ;
Kirdar, Betuel ;
Penttila, Merja ;
Klipp, Edda ;
Palsson, Bernhard O. ;
Sauer, Uwe ;
Oliver, Stephen G. ;
Mendes, Pedro ;
Nielsen, Jens ;
Kell, Douglas B. .
NATURE BIOTECHNOLOGY, 2008, 26 (10) :1155-1160
[10]   The principle of flux minimization and its application to estimate stationary fluxes in metabolic networks [J].
Holzhütter, HG .
EUROPEAN JOURNAL OF BIOCHEMISTRY, 2004, 271 (14) :2905-2922