Review on Polymers for Thermoelectric Applications

被引:191
作者
Culebras, Mario [1 ]
Gomez, Clara M. [1 ]
Cantarero, Andres [1 ]
机构
[1] Univ Valencia, Inst Mat Sci, Valencia 46071, Spain
来源
MATERIALS | 2014年 / 7卷 / 09期
关键词
intrinsically conducting polymers; thermoelectrics; nanocomposites; ACID-DOPED POLYANILINE; TRANSPORT-PROPERTIES; POWER FACTORS; THIN-FILMS; POLY(3,4-ETHYLENEDIOXYTHIOPHENE) POLY(STYRENESULFONATE); HYBRID NANOCOMPOSITES; THERMAL-CONDUCTIVITY; SEEBECK COEFFICIENT; MOLECULAR-DYNAMICS; ORGANIC COMPOSITES;
D O I
10.3390/ma7096701
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
In this review, we report the state-of-the-art of polymers in thermoelectricity. Classically, a number of inorganic compounds have been considered as the best thermoelectric materials. Since the prediction of the improvement of the figure of merit by means of electronic confinement in 1993, it has been improved by a factor of 3-4. In the mean time, organic materials, in particular intrinsically conducting polymers, had been considered as competitors of classical thermoelectrics, since their figure of merit has been improved several orders of magnitude in the last few years. We review here the evolution of the figure of merit or the power factor during the last years, and the best candidates to compete with inorganic materials. We also outline the best polymers to substitute classical thermoelectric materials and the advantages they present in comparison with inorganic systems.
引用
收藏
页码:6701 / 6732
页数:32
相关论文
共 107 条
[1]   Improved power factor of polyaniline nanocomposites with exfoliated graphene nanoplatelets (GNPs) [J].
Abad, Begona ;
Alda, Irene ;
Diaz-Chao, Pablo ;
Kawakami, Hiroshi ;
Almarza, Albert ;
Amantia, David ;
Gutierrez, David ;
Aubouy, Laurent ;
Martin-Gonzalez, Marisol .
JOURNAL OF MATERIALS CHEMISTRY A, 2013, 1 (35) :10450-10457
[2]   Transport properties of poly(3,4-ethylenedioxythiophene)/poly(styrenesulfonate) [J].
Aleshin, AN ;
Williams, SR ;
Heeger, AJ .
SYNTHETIC METALS, 1998, 94 (02) :173-177
[3]   Electrodeposition and Characterisation of Copolymers Based on Pyrrole and 3,4-Ethylenedioxythiophene in BMIM BF4 Using a Microcell Configuration [J].
Astratine, Lavinia ;
Magner, Edmond ;
Cassidy, John ;
Betts, Anthony .
ELECTROCHIMICA ACTA, 2014, 115 :440-448
[4]   Tunneling resistance and its effect on the electrical conductivity of carbon nanotube nanocomposites [J].
Bao, W. S. ;
Meguid, S. A. ;
Zhu, Z. H. ;
Weng, G. J. .
JOURNAL OF APPLIED PHYSICS, 2012, 111 (09)
[5]   DEFORMATION POTENTIALS AND MOBILITIES IN NON-POLAR CRYSTALS [J].
BARDEEN, J ;
SHOCKLEY, W .
PHYSICAL REVIEW, 1950, 80 (01) :72-80
[6]   Iodine doping effects on the lattice thermal conductivity of oxidized polyacetylene nanofibers [J].
Bi, Kedong ;
Weathers, Annie ;
Matsushita, Satoshi ;
Pettes, Michael T. ;
Goh, Munju ;
Akagi, Kazuo ;
Shi, Li .
JOURNAL OF APPLIED PHYSICS, 2013, 114 (19)
[7]   Thermoelectric composites of poly(3-hexylthiophene) and carbon nanotubes with a large power factor [J].
Bounioux, Celine ;
Diaz-Chao, Pablo ;
Campoy-Quiles, Mariano ;
Martin-Gonzalez, Marisol S. ;
Goni, Alejandro R. ;
Yerushalmi-Rozene, Rachel ;
Mueller, Christian .
ENERGY & ENVIRONMENTAL SCIENCE, 2013, 6 (03) :918-925
[8]  
Bubnova O, 2014, NAT MATER, V13, P190, DOI [10.1038/NMAT3824, 10.1038/nmat3824]
[9]   Tuning the Thermoelectric Properties of Conducting Polymers in an Electrochemical Transistor [J].
Bubnova, Olga ;
Berggren, Magnus ;
Crispin, Xavier .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2012, 134 (40) :16456-16459
[10]  
Bubnova O, 2011, NAT MATER, V10, P429, DOI [10.1038/NMAT3012, 10.1038/nmat3012]