Transposases are the most abundant, most ubiquitous genes in nature

被引:204
作者
Aziz, Ramy K. [1 ,2 ]
Breitbart, Mya [3 ]
Edwards, Robert A. [4 ,5 ]
机构
[1] Univ Chicago, Computat Inst, Chicago, IL 60637 USA
[2] Cairo Univ, Dept Microbiol & Immunol, Fac Pharm, Cairo 11562, Egypt
[3] Univ S Florida, Coll Marine Sci, Tampa, FL 33620 USA
[4] San Diego State Univ, Dept Comp Sci, San Diego, CA 92182 USA
[5] Argonne Natl Lab, Div Math & Comp Sci, Argonne, IL 60439 USA
基金
美国国家科学基金会; 美国国家卫生研究院;
关键词
METAGENOMIC ANALYSIS; VIRAL COMMUNITIES; MICROBIAL GENOMES; RAST SERVER; SELFISH DNA; LIGHT; TRANSPOSITION; DIVERSITY; EVOLUTION; ELEMENTS;
D O I
10.1093/nar/gkq140
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Genes, like organisms, struggle for existence, and the most successful genes persist and widely disseminate in nature. The unbiased determination of the most successful genes requires access to sequence data from a wide range of phylogenetic taxa and ecosystems, which has finally become achievable thanks to the deluge of genomic and metagenomic sequences. Here, we analyzed 10 million protein-encoding genes and gene tags in sequenced bacterial, archaeal, eukaryotic and viral genomes and metagenomes, and our analysis demonstrates that genes encoding transposases are the most prevalent genes in nature. The finding that these genes, classically considered as selfish genes, outnumber essential or housekeeping genes suggests that they offer selective advantage to the genomes and ecosystems they inhabit, a hypothesis in agreement with an emerging body of literature. Their mobile nature not only promotes dissemination of transposable elements within and between genomes but also leads to mutations and rearrangements that can accelerate biological diversification and-consequently-evolution. By securing their own replication and dissemination, transposases guarantee to thrive so long as nucleic acid-based life forms exist.
引用
收藏
页码:4207 / 4217
页数:11
相关论文
共 101 条
  • [1] Transposition mediated by RAG1 and RAG2 and its implications for the evolution of the immune system
    Agrawal, A
    Eastman, QM
    Schatz, DG
    [J]. NATURE, 1998, 394 (6695) : 744 - 751
  • [2] A Flood of Microbial Genomes-Do We Need More?
    Ahmed, Niyaz
    [J]. PLOS ONE, 2009, 4 (06):
  • [3] Gapped BLAST and PSI-BLAST: a new generation of protein database search programs
    Altschul, SF
    Madden, TL
    Schaffer, AA
    Zhang, JH
    Zhang, Z
    Miller, W
    Lipman, DJ
    [J]. NUCLEIC ACIDS RESEARCH, 1997, 25 (17) : 3389 - 3402
  • [4] PHACCS, an online tool for estimating the structure and diversity of uncultured viral communities using metagenomic information
    Angly, F
    Rodriguez-Brito, B
    Bangor, D
    McNairnie, P
    Breitbart, M
    Salamon, P
    Felts, B
    Nulton, J
    Mahaffy, J
    Rohwer, F
    [J]. BMC BIOINFORMATICS, 2005, 6 (1)
  • [5] The marine viromes of four oceanic regions
    Angly, Florent E.
    Felts, Ben
    Breitbart, Mya
    Salamon, Peter
    Edwards, Robert A.
    Carlson, Craig
    Chan, Amy M.
    Haynes, Matthew
    Kelley, Scott
    Liu, Hong
    Mahaffy, Joseph M.
    Mueller, Jennifer E.
    Nulton, Jim
    Olson, Robert
    Parsons, Rachel
    Rayhawk, Steve
    Suttle, Curtis A.
    Rohwer, Forest
    [J]. PLOS BIOLOGY, 2006, 4 (11) : 2121 - 2131
  • [6] The RAST server: Rapid annotations using subsystems technology
    Aziz, Ramy K.
    Bartels, Daniela
    Best, Aaron A.
    DeJongh, Matthew
    Disz, Terrence
    Edwards, Robert A.
    Formsma, Kevin
    Gerdes, Svetlana
    Glass, Elizabeth M.
    Kubal, Michael
    Meyer, Folker
    Olsen, Gary J.
    Olson, Robert
    Osterman, Andrei L.
    Overbeek, Ross A.
    McNeil, Leslie K.
    Paarmann, Daniel
    Paczian, Tobias
    Parrello, Bruce
    Pusch, Gordon D.
    Reich, Claudia
    Stevens, Rick
    Vassieva, Olga
    Vonstein, Veronika
    Wilke, Andreas
    Zagnitko, Olga
    [J]. BMC GENOMICS, 2008, 9 (1)
  • [7] The case for biocentric microbiology
    Aziz, Ramy Karam
    [J]. GUT PATHOGENS, 2009, 1
  • [8] Bateman A, 2004, NUCLEIC ACIDS RES, V32, pD138, DOI [10.1093/nar/gkp985, 10.1093/nar/gkh121, 10.1093/nar/gkr1065]
  • [9] Genome-Wide Analysis of the "Cut-and-Paste'' Transposons of Grapevine
    Benjak, Andrej
    Forneck, Astrid
    Casacuberta, Josep M.
    [J]. PLOS ONE, 2008, 3 (09):
  • [10] Solexa Ltd
    Bennett, S
    [J]. PHARMACOGENOMICS, 2004, 5 (04) : 433 - 438