Graphene oxide-based qRT-PCR assay enables the sensitive and specific detection of miRNAs for the screening of ovarian cancer

被引:41
作者
Hu, Chenyan [1 ]
Zhang, Linlin [2 ]
Yang, Zhongzhu [1 ]
Song, Zhen [1 ]
Zhang, Qin [2 ]
He, Yang [1 ]
机构
[1] Chengdu Univ Tradit Chinese Med, Coll Med Technol, State Key Lab Southwestern Chinese Med Resources, Chengdu 611137, Sichuan, Peoples R China
[2] Peoples Hosp Mianzhu City, Dept Gynecol, Deyang 618200, Sichuan, Peoples R China
关键词
Graphene oxide; qRT-PCR; miRNAs; Ovarian cancer; Screening; WALLED CARBON NANOTUBES; CIRCULATING MICRORNAS; DNA; BIOMARKERS; STRATEGY;
D O I
10.1016/j.aca.2021.338715
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
Circulating microRNAs (miRNAs) have the potential to become reliable and noninvasive biomarkers for ovarian cancer (OC) diagnosis; however, the conventional miRNAs detection techniques exhibit enduring limitations of low sensitivity and specificity. Graphene oxide (GO), a novel nanomaterial, is at the forefront of material design for extensive biomedical applications. Owing to the excellent water affinity and single-stranded DNA (ssDNA) adsorption characteristics of GO, we designed and developed a GO -based qRT-PCR assay for the detection of miRNAs associated with OC. In the GO-based qRT-PCR sys-tem, GO could significantly improve the sensitivity and specificity of the qRT-PCR assay by noncovalently interacting with primers and ssDNA and reducing the occurrence of non-specific amplification. More -over, the detection of miRNAs associated with OC confirmed that GO-based qRT-PCR assay could differentiate benign ovarian tumors from OC (sensitivity, 0.91; specificity, 1.00). Collectively, these findings provide robust evidence that GO-based qRT-PCR assay can be effectively used as a promising method to detect miRNAs for the screening of OC patients. (c) 2021 Elsevier B.V. All rights reserved.
引用
收藏
页数:11
相关论文
共 51 条
[1]  
Aldridge Sarah, 2012, Methods Mol Biol, V822, P19, DOI 10.1007/978-1-61779-427-8_2
[2]   miRNa signature in small extracellular vesicles and their association with platinum resistance and cancer recurrence in ovarian cancer [J].
Alharbi, Mona ;
Sharma, Shayna ;
Guanzon, Dominic ;
Lai, Andrew ;
Zuniga, Felipe ;
Shiddiky, Muhammad J. A. ;
Yamauchi, Yusuke ;
Salas-Burgos, Alexis ;
He, Yaowu ;
Pejovic, Tanja ;
Winters, Carmen ;
Morgan, Terry ;
Perrin, Lewis ;
Hooper, John D. ;
Salomon, Carlos .
NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE, 2020, 28
[3]   Cancer Statistics in China, 2015 [J].
Chen, Wanqing ;
Zheng, Rongshou ;
Baade, Peter D. ;
Zhang, Siwei ;
Zeng, Hongmei ;
Bray, Freddie ;
Jemal, Ahmedin ;
Yu, Xue Qin ;
He, Jie .
CA-A CANCER JOURNAL FOR CLINICIANS, 2016, 66 (02) :115-132
[4]   Optimal treatment of early-stage ovarian cancer [J].
Collinson, F. ;
Qian, W. ;
Fossati, R. ;
Lissoni, A. ;
Williams, C. ;
Parmar, M. ;
Ledermann, J. ;
Colombo, N. ;
Swart, A. .
ANNALS OF ONCOLOGY, 2014, 25 (06) :1165-1171
[5]   Effects of single-walled carbon nanotubes on the polymerase chain reaction [J].
Cui, DX ;
Tian, FR ;
Kong, Y ;
Titushikin, I ;
Gao, HJ .
NANOTECHNOLOGY, 2004, 15 (01) :154-157
[6]   miRNAs and ovarian cancer: An overview [J].
Deb, Bornali ;
Uddin, Arif ;
Chakraborty, Supriyo .
JOURNAL OF CELLULAR PHYSIOLOGY, 2018, 233 (05) :3846-3854
[7]   Oncomirs - microRNAs with a role in cancer [J].
Esquela-Kerscher, A ;
Slack, FJ .
NATURE REVIEWS CANCER, 2006, 6 (04) :259-269
[8]   Detection of BRCA1 gene on partially reduced graphene oxide biosensors [J].
Filippidou, M. K. ;
Loukas, C. Moritz ;
Kaprou, G. ;
Tegou, E. ;
Petrou, P. ;
Kakabakos, S. ;
Tserepi, A. ;
Chatzandroulis, S. .
MICROELECTRONIC ENGINEERING, 2019, 216
[9]   Circulating Cell-Free Tumour DNA in the Management of Cancer [J].
Francis, Glenn ;
Stein, Sandra .
INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2015, 16 (06) :14122-14142
[10]  
Geretto M, 2017, AM J CANCER RES, V7, P1350