Computation of traveling waves for spatially discrete bistable reaction-diffusion equations

被引:10
作者
Elmer, CE [1 ]
VanVleck, ES [1 ]
机构
[1] COLORADO SCH MINES, DEPT MATH & COMP SCI, GOLDEN, CO 80401 USA
基金
美国国家科学基金会;
关键词
traveling waves; lattice anisotropy; propagation failure;
D O I
10.1016/0168-9274(95)00123-9
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Traveling wave solutions for reaction-diffusion equations on a discrete spatial domain are considered. Traveling wave equations are derived for the spatial domain, Z(n) for n = 1,2,3. Using an idealized nonlinear term, the anisotropy introduced by the lattice is analyzed. Numerical techniques for solving the traveling wave equations are introduced. Finally, some numerical experiments are presented.
引用
收藏
页码:157 / 169
页数:13
相关论文
共 21 条
[1]  
Ascher U.M., 1988, NUMERICAL SOLUTION B
[2]   THE NUMERICAL COMPUTATION OF CONNECTING ORBITS IN DYNAMIC-SYSTEMS [J].
BEYN, WJ .
IMA JOURNAL OF NUMERICAL ANALYSIS, 1990, 10 (03) :379-405
[3]   THEORY OF CRYSTAL GROWTH AND INTERFACE MOTION IN CRYSTALLINE MATERIALS [J].
CAHN, JW .
ACTA METALLURGICA, 1960, 8 (08) :554-562
[4]  
CAHN JW, UNPUB TRAVELING WAVE
[5]   JACOBI ITERATION IN IMPLICIT DIFFERENCE-SCHEMES FOR THE WAVE-EQUATION [J].
DUNCAN, DB ;
LYNCH, MAM .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1991, 28 (06) :1661-1679
[6]   NUMERICAL COMPUTATION AND CONTINUATION OF INVARIANT-MANIFOLDS CONNECTING FIXED-POINTS [J].
FRIEDMAN, MJ ;
DOEDEL, EJ .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1991, 28 (03) :789-808
[7]   MONOTONE PIECEWISE CUBIC INTERPOLATION [J].
FRITSCH, FN ;
CARLSON, RE .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1980, 17 (02) :238-246
[9]  
Golub G, 2013, Matrix Computations, V4th
[10]  
Hackbusch Wolfgang, 1994, Iterative solution of large sparse systems of equations, V95