Modelling of gas-liquid separation processes usually requires knowledge on fluid dynamic and mass transfer parameters, such as effective interfacial area and mass transfer coefficients. As a rule, these parameters cannot be determined without extensive experimental work. An alternative modelling approach for separation columns filled with structured packings is based on hydrodynamic analogies (HA) between real complex and simplified model flow. This way leads to a significant reduction of required experimentally determined parameters. Above all, the data on mass transfer coefficients are not necessary. Model parameters which cannot be directly determined within the HA approach can be estimated using a complementary modelling method. In this work, the complementary modelling approach is applied to the reactive absorption of carbon dioxide into aqueous solutions of sodium hydroxide and monoethanolamine. Two different types of structured packings are investigated. For the model validation, both our own experimental results and data from the literature are used.
机构:
Tampere Univ, Fac Engn & Nat Sci, Mat Sci & Environm Engn, Tampere 33720, FinlandChem Proc & Energy Resources Inst CERTH CPERI, Ctr Res & Technol Hellas, Thessaloniki, Greece