A fourth-order model for MEMS with clamped boundary conditions

被引:11
作者
Laurencot, Philippe [1 ]
Walker, Christoph [2 ]
机构
[1] Univ Toulouse, CNRS, Inst Math Toulouse, UMR 5219, F-31062 Toulouse 9, France
[2] Leibniz Univ Hannover, Inst Angew Math, D-30167 Hannover, Germany
关键词
BIFURCATION;
D O I
10.1112/plms/pdu037
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The dynamical and stationary behaviors of a fourth-order equation in the unit ball with clamped boundary conditions and a singular reaction term are investigated. The equation arises in the modeling of microelectromechanical systems and includes a positive voltage parameter lambda. It is shown that there is a threshold value lambda(*) > 0 of the voltage parameter such that no radially symmetric stationary solution exists for lambda > lambda(*), while at least two such solutions exist for. lambda is an element of (0, lambda(*)). Local and global well-posedness results are obtained for the corresponding hyperbolic and parabolic evolution problems as well as the occurrence of finite time singularities when lambda > lambda(*).
引用
收藏
页码:1435 / 1464
页数:30
相关论文
共 27 条
[1]  
[Anonymous], 1905, Rend. Circ. Mat. Palermo
[2]  
[Anonymous], 2010, Lecture Notes in Mathematics
[3]  
Arendt W, 2002, Handbook of Differential Equations: Evolutionary Equations, V1, P1, DOI [10.1016/S1874-5717(04)80003-3, DOI 10.1016/S1874-5717(04)80003-3]
[4]   Radial symmetry of positive solutions to nonlinear polyharmonic Dirichlet problems [J].
Berchio, Elvise ;
Gazzola, Filippo ;
Weth, Tobias .
JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2008, 620 :165-183
[5]   UNIFORM ESTIMATES AND BLOW UP BEHAVIOR FOR SOLUTIONS OF -DELTA-U = V(X)EU IN 2 DIMENSIONS [J].
BREZIS, H ;
MERLE, F .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 1991, 16 (8-9) :1223-1253
[6]   The sub-harmonic bifurcation of Stokes waves [J].
Buffoni, B ;
Dancer, EN ;
Toland, JF .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2000, 152 (03) :241-271
[7]   THE QUENCHING OF SOLUTIONS OF SEMI-LINEAR HYPERBOLIC-EQUATIONS [J].
CHANG, PH ;
LEVINE, HA .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1981, 12 (06) :893-903
[8]   A free boundary problem in the theory of electrically actuated microdevices [J].
Cimatti, Giovanni .
APPLIED MATHEMATICS LETTERS, 2007, 20 (12) :1232-1236
[9]   The Critical Dimension for a Fourth Order Elliptic Problem with Singular Nonlinearity [J].
Cowan, Craig ;
Esposito, Pierpaolo ;
Ghoussoub, Nassif ;
Moradifam, Amir .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2010, 198 (03) :763-787
[10]  
CRANDALL MG, 1973, ARCH RATION MECH AN, V52, P161, DOI 10.1007/BF00282325