A note on local coloring of graphs

被引:4
|
作者
Li, Zepeng [1 ]
Shan, Zehui [2 ,3 ]
Zhu, Enqiang [1 ]
Xu, Jin [1 ]
机构
[1] Peking Univ, Sch Elect Engn & Comp Sci, Key Lab High Confidence Software Technol, Beijing 100871, Peoples R China
[2] Inst Higher Educ Sichuan Prov, Key Lab Pattern Recognit & Intelligent Informat P, Chengdu, Peoples R China
[3] Chengdu Univ, Sch Informat Sci & Technol, Chengdu 610106, Peoples R China
基金
中国国家自然科学基金;
关键词
Chromatic number; Local k-coloring; Local chromatic number;
D O I
10.1016/j.ipl.2014.09.032
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
A local k-coloring of a graph G is a function f : V (G) -> {1, 2, ..., k} such that for each S subset of V (G), 2 <= vertical bar S vertical bar <= 3, there exist u, v is an element of S with vertical bar f(u) - f(v)vertical bar at least the size of the subgraph induced by S. The local chromatic number of G is chi(l)(G) = min{k : G has a local k-coloring). Chartrand et al. [2] asked: does there exist a graph G(k) such that chi(l)(G(k)) = chi (G(k)) = k? Furthermore, they conjectured that for every positive integer k, there exists a graph G(k) with chi(l)(G) = k such that every local k-coloring of G(k) uses all of the colors 1, 2, ..., k. In this paper we give a affirmative answer to the problem and confirm the conjecture. (C) 2014 Published by Elsevier B.V.
引用
收藏
页码:302 / 305
页数:4
相关论文
共 50 条
  • [41] Vector coloring the categorical product of graphs
    Godsil, Chris
    Roberson, David E.
    Rooney, Brendan
    Samal, Robert
    Varvitsiotis, Antonios
    MATHEMATICAL PROGRAMMING, 2020, 182 (1-2) : 275 - 314
  • [42] Edge-locating coloring of graphs
    Korivand, Meysam
    Mojdeh, Doost Ali
    Baskoro, Edy Tri
    Erfanian, Ahmad
    ELECTRONIC JOURNAL OF GRAPH THEORY AND APPLICATIONS, 2024, 12 (01) : 55 - 73
  • [43] Multi-Coloring the Mycielskian of Graphs
    Lin, Wensong
    Liu, Daphne Der-Fen
    Zhu, Xuding
    JOURNAL OF GRAPH THEORY, 2010, 63 (04) : 311 - 323
  • [44] On the P3 Coloring of Graphs
    Yang, Hong
    Naeem, Muhammad
    Qaisar, Shahid
    SYMMETRY-BASEL, 2023, 15 (02):
  • [45] On indicated coloring of lexicographic product of graphs
    Francis, P.
    Raj, S. Francis
    Gokulnath, M.
    DISCRETE APPLIED MATHEMATICS, 2022, 319 : 576 - 582
  • [46] Coloring polygon visibility graphs and their generalizations
    Davies, James
    Krawczyk, Tomasz
    Mccarty, Rose
    Walczak, Bartosz
    JOURNAL OF COMBINATORIAL THEORY SERIES B, 2023, 161 : 268 - 300
  • [47] Online list coloring for signed graphs
    Tupper, M.
    White, J. A.
    ALGEBRA AND DISCRETE MATHEMATICS, 2022, 33 (02): : 151 - 172
  • [48] On the conjectures of neighbor locating coloring of graphs
    Mojdeh, Doost Ali
    THEORETICAL COMPUTER SCIENCE, 2022, 922 : 300 - 307
  • [49] b-coloring of tight graphs
    Havet, Frederic
    Sales, Claudia Linhares
    Sampaio, Leonardo
    DISCRETE APPLIED MATHEMATICS, 2012, 160 (18) : 2709 - 2715
  • [50] On the existence of graphs with prescribed coloring parameters
    Yegnanarayanan, V
    Balakrishnan, R
    Sampathkumar, R
    DISCRETE MATHEMATICS, 2000, 216 (1-3) : 293 - 297