A note on local coloring of graphs

被引:4
|
作者
Li, Zepeng [1 ]
Shan, Zehui [2 ,3 ]
Zhu, Enqiang [1 ]
Xu, Jin [1 ]
机构
[1] Peking Univ, Sch Elect Engn & Comp Sci, Key Lab High Confidence Software Technol, Beijing 100871, Peoples R China
[2] Inst Higher Educ Sichuan Prov, Key Lab Pattern Recognit & Intelligent Informat P, Chengdu, Peoples R China
[3] Chengdu Univ, Sch Informat Sci & Technol, Chengdu 610106, Peoples R China
基金
中国国家自然科学基金;
关键词
Chromatic number; Local k-coloring; Local chromatic number;
D O I
10.1016/j.ipl.2014.09.032
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
A local k-coloring of a graph G is a function f : V (G) -> {1, 2, ..., k} such that for each S subset of V (G), 2 <= vertical bar S vertical bar <= 3, there exist u, v is an element of S with vertical bar f(u) - f(v)vertical bar at least the size of the subgraph induced by S. The local chromatic number of G is chi(l)(G) = min{k : G has a local k-coloring). Chartrand et al. [2] asked: does there exist a graph G(k) such that chi(l)(G(k)) = chi (G(k)) = k? Furthermore, they conjectured that for every positive integer k, there exists a graph G(k) with chi(l)(G) = k such that every local k-coloring of G(k) uses all of the colors 1, 2, ..., k. In this paper we give a affirmative answer to the problem and confirm the conjecture. (C) 2014 Published by Elsevier B.V.
引用
收藏
页码:302 / 305
页数:4
相关论文
共 50 条
  • [31] Injective coloring of graphs revisited
    Bresar, Bostjan
    Samadi, Babak
    Yero, Ismael G.
    DISCRETE MATHEMATICS, 2023, 346 (05)
  • [32] Coloring of integer distance graphs
    Kemnitz, A
    Kolberg, H
    DISCRETE MATHEMATICS, 1998, 191 (1-3) : 113 - 123
  • [33] Injective coloring of planar graphs
    Bu, Yuehua
    Chen, Dong
    Raspaud, Andre
    Wang, Weifan
    DISCRETE APPLIED MATHEMATICS, 2009, 157 (04) : 663 - 672
  • [34] Coloring in graphs of twist knots
    Sahin, Abdulgani
    NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2022, 38 (04) : 928 - 935
  • [35] Equitable Coloring of Random Graphs
    Krivelevich, Michael
    Patkos, Balazs
    RANDOM STRUCTURES & ALGORITHMS, 2009, 35 (01) : 83 - 99
  • [36] Coloring the Cartesian sum of graphs
    Liu, Daphne Der-Fen
    Zhu, Xuding
    DISCRETE MATHEMATICS, 2008, 308 (24) : 5928 - 5936
  • [37] Coloring hypercomplete and hyperpath graphs
    Civan, Yusuf
    Taylan, Demet
    TURKISH JOURNAL OF MATHEMATICS, 2014, 38 (01) : 1 - 15
  • [38] On Coloring Catalan Number Distance Graphs and Interference Graphs
    Yegnanarayanan, Venkataraman
    Yegnanarayanan, Gayathri Narayana
    Balas, Marius M.
    SYMMETRY-BASEL, 2018, 10 (10):
  • [39] A note on coloring line arrangements
    Ackerman, Eyal
    Pach, Janos
    Pinchasi, Rom
    Radoicic, Rados
    Toth, Geza
    ELECTRONIC JOURNAL OF COMBINATORICS, 2014, 21 (02)
  • [40] On the local irregularity vertex coloring of volcano, broom, parachute, double broom and complete multipartite graphs
    Kristiana, Arika Indah
    Nikmah, Nafidatun
    Dafik
    Alfarisi, Ridho
    Hasan, M. Ali
    Slamin
    DISCRETE MATHEMATICS ALGORITHMS AND APPLICATIONS, 2022, 14 (06)