A note on local coloring of graphs

被引:4
|
作者
Li, Zepeng [1 ]
Shan, Zehui [2 ,3 ]
Zhu, Enqiang [1 ]
Xu, Jin [1 ]
机构
[1] Peking Univ, Sch Elect Engn & Comp Sci, Key Lab High Confidence Software Technol, Beijing 100871, Peoples R China
[2] Inst Higher Educ Sichuan Prov, Key Lab Pattern Recognit & Intelligent Informat P, Chengdu, Peoples R China
[3] Chengdu Univ, Sch Informat Sci & Technol, Chengdu 610106, Peoples R China
基金
中国国家自然科学基金;
关键词
Chromatic number; Local k-coloring; Local chromatic number;
D O I
10.1016/j.ipl.2014.09.032
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
A local k-coloring of a graph G is a function f : V (G) -> {1, 2, ..., k} such that for each S subset of V (G), 2 <= vertical bar S vertical bar <= 3, there exist u, v is an element of S with vertical bar f(u) - f(v)vertical bar at least the size of the subgraph induced by S. The local chromatic number of G is chi(l)(G) = min{k : G has a local k-coloring). Chartrand et al. [2] asked: does there exist a graph G(k) such that chi(l)(G(k)) = chi (G(k)) = k? Furthermore, they conjectured that for every positive integer k, there exists a graph G(k) with chi(l)(G) = k such that every local k-coloring of G(k) uses all of the colors 1, 2, ..., k. In this paper we give a affirmative answer to the problem and confirm the conjecture. (C) 2014 Published by Elsevier B.V.
引用
收藏
页码:302 / 305
页数:4
相关论文
共 50 条
  • [21] Coloring Sierpinski graphs and Sierpinski gasket graphs
    Klavzar, Sandi
    TAIWANESE JOURNAL OF MATHEMATICS, 2008, 12 (02): : 513 - 522
  • [22] The relationship between incidence coloring and vertex coloring of graphs
    Wang, Shudong
    Yan, Lijun
    DYNAMICS OF CONTINUOUS DISCRETE AND IMPULSIVE SYSTEMS-SERIES B-APPLICATIONS & ALGORITHMS, 2007, 14 : 917 - 921
  • [23] Coloring minimal Cayley graphs
    Garcia-Marco, Ignacio
    Knauer, Kolja
    EUROPEAN JOURNAL OF COMBINATORICS, 2025, 125
  • [24] Injective Coloring of Product Graphs
    Samadi, Babak
    Soltankhah, Nasrin
    G. Yero, Ismael
    BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2024, 47 (03)
  • [25] Coloring the Square of Sierpinski Graphs
    Xue, Bing
    Zuo, Liancui
    Li, Guojun
    GRAPHS AND COMBINATORICS, 2015, 31 (05) : 1795 - 1805
  • [26] Grundy packing coloring of graphs☆
    Gozupek, Didem
    Peterin, Iztok
    DISCRETE APPLIED MATHEMATICS, 2025, 371 : 17 - 30
  • [27] Coloring Geographical Threshold Graphs
    Bradonjic, Milan
    Mueller, Tobias
    Percus, Allon G.
    DISCRETE MATHEMATICS AND THEORETICAL COMPUTER SCIENCE, 2010, 12 (03) : 103 - 114
  • [28] Coloring distance graphs on the plane
    Chybowska-Sokol, Joanna
    Junosza-Szaniawski, Konstanty
    Wesek, Krzysztof
    DISCRETE MATHEMATICS, 2023, 346 (07)
  • [29] Coloring the cliques of line graphs
    Bacso, Gabor
    Ryjacek, Zdenek
    Tuza, Zsolt
    DISCRETE MATHEMATICS, 2017, 340 (11) : 2641 - 2649
  • [30] On the square coloring of comparability graphs
    Yetim, Mehmet Akif
    DISCRETE MATHEMATICS ALGORITHMS AND APPLICATIONS, 2022, 14 (04)