A note on local coloring of graphs

被引:4
|
作者
Li, Zepeng [1 ]
Shan, Zehui [2 ,3 ]
Zhu, Enqiang [1 ]
Xu, Jin [1 ]
机构
[1] Peking Univ, Sch Elect Engn & Comp Sci, Key Lab High Confidence Software Technol, Beijing 100871, Peoples R China
[2] Inst Higher Educ Sichuan Prov, Key Lab Pattern Recognit & Intelligent Informat P, Chengdu, Peoples R China
[3] Chengdu Univ, Sch Informat Sci & Technol, Chengdu 610106, Peoples R China
基金
中国国家自然科学基金;
关键词
Chromatic number; Local k-coloring; Local chromatic number;
D O I
10.1016/j.ipl.2014.09.032
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
A local k-coloring of a graph G is a function f : V (G) -> {1, 2, ..., k} such that for each S subset of V (G), 2 <= vertical bar S vertical bar <= 3, there exist u, v is an element of S with vertical bar f(u) - f(v)vertical bar at least the size of the subgraph induced by S. The local chromatic number of G is chi(l)(G) = min{k : G has a local k-coloring). Chartrand et al. [2] asked: does there exist a graph G(k) such that chi(l)(G(k)) = chi (G(k)) = k? Furthermore, they conjectured that for every positive integer k, there exists a graph G(k) with chi(l)(G) = k such that every local k-coloring of G(k) uses all of the colors 1, 2, ..., k. In this paper we give a affirmative answer to the problem and confirm the conjecture. (C) 2014 Published by Elsevier B.V.
引用
收藏
页码:302 / 305
页数:4
相关论文
共 50 条
  • [1] Note on coloring of double disk graphs
    Kranjc, Jaka
    Luzar, Borut
    Mockovciakova, Martina
    Sotak, Roman
    JOURNAL OF GLOBAL OPTIMIZATION, 2014, 60 (04) : 793 - 799
  • [2] Note on coloring of double disk graphs
    Jaka Kranjc
    Borut Lužar
    Martina Mockovčiaková
    Roman Soták
    Journal of Global Optimization, 2014, 60 : 793 - 799
  • [3] Local coloring of Kneser graphs
    Omoomi, Behnaz
    Pourmiri, Ali
    DISCRETE MATHEMATICS, 2008, 308 (24) : 5922 - 5927
  • [4] A note on b-coloring of Kneser graphs
    Shaebani, Saeed
    DISCRETE APPLIED MATHEMATICS, 2019, 257 : 368 - 369
  • [5] A Note on General Neighbor-Distinguishing Total Coloring of Graphs
    Huang, Danjun
    Wang, Weifan
    Yin, Jianxing
    ARS COMBINATORIA, 2012, 107 : 379 - 384
  • [6] Local antimagic vertex coloring for generalized friendship graphs
    Nalliah, M.
    Shankar, R.
    Wang, Tao-Ming
    JOURNAL OF DISCRETE MATHEMATICAL SCIENCES & CRYPTOGRAPHY, 2023, 26 (04) : 1063 - 1078
  • [7] Indicated coloring of graphs
    Grzesik, Andrzej
    DISCRETE MATHEMATICS, 2012, 312 (23) : 3467 - 3472
  • [8] Coloring graphs with crossings
    Oporowski, Bogdan
    Zhao, David
    DISCRETE MATHEMATICS, 2009, 309 (09) : 2948 - 2951
  • [9] On the Comparison of the Distinguishing Coloring and the Locating Coloring of Graphs
    M. Korivand
    A. Erfanian
    Edy Tri Baskoro
    Mediterranean Journal of Mathematics, 2023, 20
  • [10] On the dynamic coloring of graphs
    Alishahi, Meysam
    DISCRETE APPLIED MATHEMATICS, 2011, 159 (2-3) : 152 - 156