A note on local coloring of graphs

被引:4
作者
Li, Zepeng [1 ]
Shan, Zehui [2 ,3 ]
Zhu, Enqiang [1 ]
Xu, Jin [1 ]
机构
[1] Peking Univ, Sch Elect Engn & Comp Sci, Key Lab High Confidence Software Technol, Beijing 100871, Peoples R China
[2] Inst Higher Educ Sichuan Prov, Key Lab Pattern Recognit & Intelligent Informat P, Chengdu, Peoples R China
[3] Chengdu Univ, Sch Informat Sci & Technol, Chengdu 610106, Peoples R China
基金
中国国家自然科学基金;
关键词
Chromatic number; Local k-coloring; Local chromatic number;
D O I
10.1016/j.ipl.2014.09.032
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
A local k-coloring of a graph G is a function f : V (G) -> {1, 2, ..., k} such that for each S subset of V (G), 2 <= vertical bar S vertical bar <= 3, there exist u, v is an element of S with vertical bar f(u) - f(v)vertical bar at least the size of the subgraph induced by S. The local chromatic number of G is chi(l)(G) = min{k : G has a local k-coloring). Chartrand et al. [2] asked: does there exist a graph G(k) such that chi(l)(G(k)) = chi (G(k)) = k? Furthermore, they conjectured that for every positive integer k, there exists a graph G(k) with chi(l)(G) = k such that every local k-coloring of G(k) uses all of the colors 1, 2, ..., k. In this paper we give a affirmative answer to the problem and confirm the conjecture. (C) 2014 Published by Elsevier B.V.
引用
收藏
页码:302 / 305
页数:4
相关论文
共 8 条
[1]  
[Anonymous], C NUMER
[2]  
Bondy J.A., 2008, GTM
[3]  
Chartrand G, 2005, UTILITAS MATHEMATICA, V67, P107
[4]   A generalization of Kneser's conjecture [J].
Hajiabolhassan, Hossein .
DISCRETE MATHEMATICS, 2011, 311 (23-24) :2663-2668
[5]  
Klavzar S., 2014, PREPRINT
[6]  
Li Z.P., 2013, NP COMPLETENES UNPUB
[7]  
Omoomi B, 2008, ARS COMBINATORIA, V86, P147
[8]   Local coloring of Kneser graphs [J].
Omoomi, Behnaz ;
Pourmiri, Ali .
DISCRETE MATHEMATICS, 2008, 308 (24) :5922-5927