High C-rate performance of LiFePO4/carbon nanofibers composite cathode for Li-ion batteries

被引:32
作者
Adepoju, Adewale A. [1 ]
Williams, Quinton L. [1 ]
机构
[1] Howard Univ, Dept Phys & Astron, Washington, DC 20059 USA
基金
美国国家科学基金会;
关键词
Carbon nanofibers; LiFePO4; Cathode; Li-ion batteries; ELECTROCHEMICAL PERFORMANCE; PHOSPHO-OLIVINES; LITHIUM; CHALLENGES;
D O I
10.1016/j.cap.2019.09.014
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Carbon nanofibers (CNFs) were incorporated into LiFePO4 composite cathode through conventional slurry formulation. Pristine LiFePO4 and modified LiFePO4 cathode samples were characterized by scanning electron microscopy, galvanostatic charge/discharge measurements, and cyclic voltammetry. Electrochemical measurements at room temperature showed LiFePO4/CNF composite to exhibit a higher specific discharge capacity of (similar to)150 mAh g(-1) at 0.1C, excellent high rate performance at >5C capability rates, and better cycling stability with 98.4% capacity retention at 5C after 200 cycles. The improved high C-rate performance of the LiFePO4/CNF composite cathode can be attributed to long-range conducive networks formed through bridges created by the CNFs. The enhanced battery performance indicates promise for high-power applications.
引用
收藏
页码:1 / 4
页数:4
相关论文
共 28 条
[1]   Ti-, Al-, and Cu-doping induced gap states in LiFePO4 [J].
Abbate, M ;
Lala, SM ;
Montoro, LA ;
Rosolen, JM .
ELECTROCHEMICAL AND SOLID STATE LETTERS, 2005, 8 (06) :A288-A290
[2]   Lithium extraction/insertion in LiFePO4:: an X-ray diffraction and Mossbauer spectroscopy study [J].
Andersson, AS ;
Kalska, B ;
Häggström, L ;
Thomas, JO .
SOLID STATE IONICS, 2000, 130 (1-2) :41-52
[3]   Building better batteries [J].
Armand, M. ;
Tarascon, J. -M. .
NATURE, 2008, 451 (7179) :652-657
[4]   Synthesis and characterization of Carbon Nano Fiber/LiFePO4 composites for Li-ion batteries [J].
Bhuvaneswari, M. S. ;
Bramnik, N. N. ;
Ensling, D. ;
Ehrenberg, H. ;
Jaegermann, W. .
JOURNAL OF POWER SOURCES, 2008, 180 (01) :553-560
[5]   Electronically conductive phospho-olivines as lithium storage electrodes [J].
Chung, SY ;
Bloking, JT ;
Chiang, YM .
NATURE MATERIALS, 2002, 1 (02) :123-128
[6]   THERMAL-STABILITY OF LIXCOO2, LIXNIO2 AND LAMBDA-MNO2 AND CONSEQUENCES FOR THE SAFETY OF LI-ION CELLS [J].
DAHN, JR ;
FULLER, EW ;
OBROVAC, M ;
VONSACKEN, U .
SOLID STATE IONICS, 1994, 69 (3-4) :265-270
[7]   LiFePO4-3D carbon nanofiber composites as cathode materials for Li-ions batteries [J].
Dimesso, L. ;
Spanheimer, C. ;
Jaegermann, W. ;
Zhang, Y. ;
Yarin, A. L. .
JOURNAL OF APPLIED PHYSICS, 2012, 111 (06)
[8]   Carbon nanofibers improve both the electronic and ionic contributions of the electrochemical performance of composite electrodes [J].
Fongy, C. ;
Jouanneau, S. ;
Guyomard, D. ;
Lestriez, B. .
JOURNAL OF POWER SOURCES, 2011, 196 (20) :8494-8499
[9]   Nanostructured materials for electrochemical energy conversion and storage devices [J].
Guo, Yu-Guo ;
Hu, Jin-Song ;
Wan, Li-Jun .
ADVANCED MATERIALS, 2008, 20 (15) :2878-2887
[10]   Synthesis and electrochemical characterizations of dual doped Li1.05Fe0.997Cu0.003PO4 [J].
Heo, J. B. ;
Lee, S. B. ;
Cho, S. H. ;
Kim, J. ;
Park, S. H. ;
Lee, Y. S. .
MATERIALS LETTERS, 2009, 63 (6-7) :581-583