Input-to-state stability results w.r.t. global attractors of semi-linear reaction-diffusion equations

被引:0
作者
Dashkovskiy, Sergey [1 ]
Kapustyan, Oleksiy [2 ]
Schmid, Jochen [3 ]
机构
[1] Univ Wurzburg, Inst Math, D-97074 Wurzburg, Germany
[2] Taras Shevchenko Natl Univ Kyiv, UA-01033 Kiev, Ukraine
[3] Fraunhofer Inst Ind Math ITWM, D-67663 Kaiserslautern, Germany
来源
IFAC PAPERSONLINE | 2020年 / 53卷 / 02期
关键词
input-to-state stability; asymptotic gain; global attractor; infinite-dimensional system; reaction-diffusion equation; PARABOLIC PDES; ISS;
D O I
10.1016/j.ifacol.2020.12.2536
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We establish local input-to-state stability and asymptotic gain results for a class of nonlinear infinite-dimensional systems with respect to the global attractor of the respective undisturbed system. We apply our results to a large class of reaction-diffusion equations with nontrivial global attractors. Copyright (C) 2020 The Authors.
引用
收藏
页码:3186 / 3191
页数:6
相关论文
共 33 条
[1]  
[Anonymous], 2017, ARXIV171009917
[2]  
Chepyzhov V.V, 2002, ATTRACTORS EQUATIONS
[3]   GLOBAL ATTRACTORS OF IMPULSIVE PARABOLIC INCLUSIONS [J].
Dashkovskiy, Sergey ;
Kapustyan, Oleksiy ;
Romaniuk, Iryna .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2017, 22 (05) :1875-1886
[4]   Input-to-state stability of infinite-dimensional control systems [J].
Dashkovskiy, Sergey ;
Mironchenko, Andrii .
MATHEMATICS OF CONTROL SIGNALS AND SYSTEMS, 2013, 25 (01) :1-35
[5]  
Gorban N. V., 2014, SOLID MECH ITS APPL, V211, P221
[6]  
Henry D., 1981, GEOMETRIC THEORY SEM
[7]   INFINITE-DIMENSIONAL INPUT-TO-STATE STABILITY AND ORLICZ SPACES [J].
Jacob, Birgit ;
Nabiullin, Robert ;
Partington, Jonathan R. ;
Schwenninger, Felix L. .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2018, 56 (02) :868-889
[8]   On the Kneser property for the complex Ginzburg-Landau equation and the Lotka-Volterra system with diffusion [J].
Kapustyan, A. V. ;
Valero, J. .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2009, 357 (01) :254-272
[9]   Attractors of multivalued dynamical processes generated by phase-field equations [J].
Kapustyan, AV ;
Melnik, VS ;
Valero, J .
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2003, 13 (07) :1969-1983
[10]  
Kapustyan O. V., 2015, Applied Mathematics & Information Sciences, V9, P2257