Multi-objective task allocation in distributed computing systems by hybrid particle swarm optimization

被引:48
|
作者
Yin, Peng-Yeng [1 ]
Yu, Shiuh-Sheng [1 ]
Wang, Pei-Pei [1 ]
Wang, Yi-Te [1 ]
机构
[1] Natl Chi Nan Univ, Dept Informat Management, Nantou 545, Taiwan
关键词
multi-objective task allocation problem; distributed computing systems; distributed system reliability; hybrid strategy; particle swarm optimization; genetic algorithm;
D O I
10.1016/j.amc.2006.06.071
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In a distributed computing system (I)CS), we need to allocate a number of modules to different processors for execution. It is desired to maximize the processor synergism in order to achieve various objectives, such as throughput maximization, reliability maximization, and cost minimization. There may also exist a set of system constraints related to memory and communication link capacity. The considered problem has been shown to be NP-hard. Most existing approaches for task allocation deal with a single objective only. This paper presents a multi-objective task allocation algorithm with presence of system constraints. The algorithm is based on the particle swarm optimization which is a new metaheuristic and has delivered many successful applications. We further devise a hybrid strategy for expediting the convergence process. We assess our algorithm by comparing to a genetic algorithm and a mathematical programming approach. The experimental results manifest that the proposed algorithm performs the best under different problem scales, task interaction densities, and network topologies. (C) 2006 Elsevier Inc. All rights reserved.
引用
收藏
页码:407 / 420
页数:14
相关论文
共 50 条
  • [1] Task allocation for maximizing reliability of a distributed system using hybrid particle swarm optimization
    Yin, Peng-Yeng
    Yu, Shiuh-Sheng
    Wang, Pei-Pei
    Wang, Yi-Te
    JOURNAL OF SYSTEMS AND SOFTWARE, 2007, 80 (05) : 724 - 735
  • [2] MULTI-OBJECTIVE PARTICLE SWARM OPTIMIZATION FOR RESOURCE ALLOCATION IN CLOUD COMPUTING
    Feng, Mingyue
    Wang, Xiao
    Zhang, Yongjin
    Li, Jianshi
    2012 IEEE 2ND INTERNATIONAL CONFERENCE ON CLOUD COMPUTING AND INTELLIGENT SYSTEMS (CCIS) VOLS 1-3, 2012, : 1161 - 1165
  • [3] A hybrid multi-objective Particle Swarm Optimization for scientific workflow scheduling
    Verma, Amandeep
    Kaushal, Sakshi
    PARALLEL COMPUTING, 2017, 62 : 1 - 19
  • [4] A Novel Hybrid Particle Swarm Optimization for Multi-Objective Problems
    Jiang, Siwei
    Cai, Zhihua
    ARTIFICIAL INTELLIGENCE AND COMPUTATIONAL INTELLIGENCE, PROCEEDINGS, 2009, 5855 : 28 - 37
  • [5] A Novel Hybrid Multi-Objective Particle Swarm Optimization Algorithm With an Adaptive Resource Allocation Strategy
    Li, Lingjie
    Chen, Shuo
    Gong, Zhe
    Lin, Qiuzhen
    Ming, Zhong
    IEEE ACCESS, 2019, 7 : 177082 - 177100
  • [6] An Improved Hybrid Multi-objective Particle Swarm Optimization Algorithm
    Zhou, Zuan
    Dai, Guangming
    Fang, Pan
    Chen, Fangjie
    Tan, Yi
    ADVANCES IN COMPUTATION AND INTELLIGENCE, PROCEEDINGS, 2008, 5370 : 181 - 188
  • [7] An efficient hybrid multi-objective particle swarm optimization with a multi-objective dichotomy line search
    Xu, Gang
    Yang, Yu-qun
    Liu, Bin-Bin
    Xu, Yi-hong
    Wu, Ai-jun
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2015, 280 : 310 - 326
  • [8] Multi-Objective Optimization Techniques for Task Scheduling Problem in Distributed Systems
    Sarathambekai, S.
    Umamaheswari, K.
    COMPUTER JOURNAL, 2018, 61 (02) : 248 - 263
  • [9] Multi-objective reliability redundancy allocation in an interval environment using particle swarm optimization
    Zhang, Enze
    Chen, Qingwei
    RELIABILITY ENGINEERING & SYSTEM SAFETY, 2016, 145 : 83 - 92
  • [10] Comparison of multi-objective evolutionary approaches for task scheduling in distributed computing systems
    Subashini, G.
    Bhuvaneswari, M. C.
    SADHANA-ACADEMY PROCEEDINGS IN ENGINEERING SCIENCES, 2012, 37 (06): : 675 - 694