Locally univalent approximations of analytic functions

被引:10
作者
Kargar, Rahim [1 ]
Pascu, Nicolae R. [2 ]
Ebadian, Ali [1 ]
机构
[1] Payame Noor Univ, Dept Math, Tehran, Iran
[2] Kennesaw State Univ, Dept Math, 1100 S Marietta Pkwy, Marietta, GA 30060 USA
关键词
Locally univalent; Approximations of analytic functions; Numerical methods; Karush-Kuhn-Tucker conditions;
D O I
10.1016/j.jmaa.2017.04.054
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In the present paper, we introduce a measure of the non-univalency of an analytic function, and we use it in order to find the best approximation of analytic function by a locally univalent normalized analytic function. (C) 2017 Elsevier Inc. All rights reserved.
引用
收藏
页码:1005 / 1021
页数:17
相关论文
共 11 条
[1]  
1Ozaki S., 1941, I I. Sci.Rep. Tokyo Bunrika Daigaku. Sect., VA4, P45
[2]  
3Umezawa T., 1952, J. Math. Soc. Japan, V4, P194
[3]  
5Singh R., 1982, Colloq. Math., V47, P309, DOI DOI 10.4064/CM-47-2-309-314
[4]  
Ahlfors L.A., 1974, Ann. Math. Stud., V79, P23
[5]  
Graham I., 2003, MONOGRAPHS TXB APPL, V255
[6]  
Jensen P A., 2003, Operations Research Models and Methods
[7]   Coefficient characterizations and sections for some univalent functions [J].
Obradovic, M. ;
Ponnusamy, S. ;
Wirths, K. -J. .
SIBERIAN MATHEMATICAL JOURNAL, 2013, 54 (04) :679-696
[8]   Convex approximations of analytic functions [J].
Pascu, Mihai N. ;
Pascu, Nicolae R. .
APPLIED MATHEMATICS AND COMPUTATION, 2014, 232 :559-567
[9]   Starlike approximations of analytic functions [J].
Pascu, Mihai N. ;
Pascu, Nicolae R. .
APPLIED MATHEMATICS AND COMPUTATION, 2012, 218 (12) :6825-6832
[10]  
Ponnusamy S., 1996, Glas. Mat. Ser. III, V31, P253