Characterization of methane production and microbial community shifts during waste activated sludge degradation in microbial electrolysis cells

被引:140
作者
Sun, Rui [1 ]
Zhou, Aijuan [1 ]
Jia, Jianna [1 ]
Liang, Qing [1 ]
Liu, Qian [1 ]
Xing, Defeng [1 ]
Ren, Nanqi [1 ]
机构
[1] Harbin Inst Technol, Sch Municipal & Environm Engn, State Key Lab Urban Water Resource & Environm, Harbin 150090, Heilongjiang, Peoples R China
基金
中国国家自然科学基金;
关键词
Waste activated sludge (WAS); Microbial electrolysis cells (MECs); Methane production; Microbial community shifts; 454; pyrosequencing; HYDROGEN-PRODUCTION; ANAEROBIC-DIGESTION; ELECTRICITY-GENERATION; BIOHYDROGEN PRODUCTION; FERMENTATION LIQUID; PRETREATMENT METHOD; FUEL-CELL; ALKALINE; TEMPERATURE; PERFORMANCE;
D O I
10.1016/j.biortech.2014.10.052
中图分类号
S2 [农业工程];
学科分类号
0828 ;
摘要
Microbial electrolysis cell (MECs) were investigated as a promising technology to manage waste activated sludge (WAS) reduction and bio-methane generation. The effect of WAS concentration on the MECs performance was discussed. At the optimal concentration of 15 g COD/L, maximum methane yield of MECs fed with alkaline pretreated WAS (A-WAS) were achieved with the value of 77.13 +/- 2.52 L CH4/kg-COD on Day 3, which had been improved by 1.5-fold compared with MECs fed with raw WAS (R-WAS), while that was negligible in open circuit controls. Efficient sludge reduction was also obtained in terms of TCOD, total protein, TSS and VSS removal. Pyrosequencing revealed the dominance of exoelectrogen Geobacter and hydrogen-producing bacteria Petrimonas in MECs fed with WAS. Methanocorpusculum with the capacity of methane generation using CO2 and H-2 also showed overwhelming dominance (96.01%). The large proportions of Petrimonas and Methanocorpusculum indicated the occurrence of hydrogenotrophic methanogenesis in our methane-producing MECs. (C) 2014 Elsevier Ltd. All rights reserved.
引用
收藏
页码:68 / 74
页数:7
相关论文
共 34 条
[1]  
[Anonymous], 2006, STANDARD METHODS EXA
[2]   Principles and potential of the anaerobic digestion of waste-activated sludge [J].
Appels, Lise ;
Baeyens, Jan ;
Degreve, Jan ;
Dewil, Raf .
PROGRESS IN ENERGY AND COMBUSTION SCIENCE, 2008, 34 (06) :755-781
[3]   Optimization of biogas production from waste activated sludge through serial digestion [J].
Athanasoulia, E. ;
Melidis, P. ;
Aivasidis, A. .
RENEWABLE ENERGY, 2012, 47 :147-151
[4]   Impacts of thermal pre-treatments on the semi-continuous anaerobic digestion of waste activated sludge [J].
Bougrier, C. ;
Delgenes, J. P. ;
Carrere, H. .
BIOCHEMICAL ENGINEERING JOURNAL, 2007, 34 (01) :20-27
[5]   Hydrogen production in a single chamber microbial electrolysis cell lacking a membrane [J].
Call, Douglas ;
Logan, Bruce E. .
ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2008, 42 (09) :3401-3406
[6]   Selective inhibition of methanogens for the improvement of biohydrogen production in microbial electrolysis cells [J].
Chae, Kyu-Jung ;
Choi, Mi-Jin ;
Kim, Kyoung-Yeol ;
Ajayi, F. F. ;
Chang, In-Seop ;
Kim, In S. .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2010, 35 (24) :13379-13386
[7]   Direct Biological Conversion of Electrical Current into Methane by Electromethanogenesis [J].
Cheng, Shaoan ;
Xing, Defeng ;
Call, Douglas F. ;
Logan, Bruce E. .
ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2009, 43 (10) :3953-3958
[8]   Progress and perspectives of sludge ozonation as a powerful pretreatment method for minimization of excess sludge production [J].
Chu, Libing ;
Yan, Sangtian ;
Xing, Xin-Hui ;
Sun, Xulin ;
Jurcik, Benjamin .
WATER RESEARCH, 2009, 43 (07) :1811-1822
[9]   Methanogenesis in membraneless microbial electrolysis cells [J].
Clauwaert, Peter ;
Verstraete, Willy .
APPLIED MICROBIOLOGY AND BIOTECHNOLOGY, 2009, 82 (05) :829-836
[10]   Performance of a pilot-scale continuous flow microbial electrolysis cell fed winery wastewater [J].
Cusick, Roland D. ;
Bryan, Bill ;
Parker, Denny S. ;
Merrill, Matthew D. ;
Mehanna, Maha ;
Kiely, Patrick D. ;
Liu, Guangli ;
Logan, Bruce E. .
APPLIED MICROBIOLOGY AND BIOTECHNOLOGY, 2011, 89 (06) :2053-2063