Improved Performance of Colloidal CdSe Quantum Dot-Sensitized Solar Cells by Hybrid Passivation

被引:37
作者
Huang, Jing [1 ]
Xu, Bo [2 ]
Yuan, Chunze [1 ]
Chen, Hong [3 ]
Sun, Junliang [3 ]
Sun, Licheng [2 ]
Agren, Hans [1 ]
机构
[1] Royal Inst Technol KTH, Dept Theoret Chem & Biol, Sch Biotechnol, S-10691 Stockholm, Sweden
[2] Royal Inst Technol KTH, Ctr Mol Devices, Dept Chem, Sch Chem Sci & Engn, S-10044 Stockholm, Sweden
[3] Stockholm Univ, Berzelii Ctr EXSELENT Porous Mat, Dept Mat & Environm Chem, S-10691 Stockholm, Sweden
基金
瑞典研究理事会;
关键词
quantum dot-sensitized solar cells; colloidal quantum dots; hybrid passivation; solution process; CHARGE-TRANSFER; SEMICONDUCTOR; NANOPARTICLES; EFFICIENCY; ULTRAFAST; SIZE;
D O I
10.1021/am504536a
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
A hybrid passivation strategy is employed to modify the surface of colloidal CdSe quantum dots (QDs) for quantum dot-sensitized solar cells (QDSCs), by using mercaptopropionic acid (MPA) and iodide anions through a ligand exchange reaction in solution. This is found to be an effective way to improve the performance of QDSCs based on colloidal QDs. The results show that MPA can increase the coverage of the QDs on TiO2 electrodes and facilitate the hole extraction from the photoxidized QDs, and simultaneously, that the iodide anions can remedy the surface defects of the CdSe QDs and thus reduce the recombination loss in the device. This hybrid passivation treatment leads to a significant enhancement of the power conversion efficiency of the QDSCs by 41%. Furthermore, an optimal ratio of iodide ions to MPA was determined for favorable hybrid passivation; results show that excessive iodine anions are detrimental to the loading of the QDs. This study demonstrates that the improvement in QDSC performance can be realized by using a combination of different functional ligands to passivate the QDs, and that ligand exchange in solution effective approach to introduce can be an different ligands.
引用
收藏
页码:18808 / 18815
页数:8
相关论文
共 50 条
  • [11] Electrocatalytic sulfur electrodes for CdS/CdSe quantum dot-sensitized solar cells
    Yang, Zusing
    Chen, Chia-Ying
    Liu, Chi-Wei
    Chang, Huan-Tsung
    CHEMICAL COMMUNICATIONS, 2010, 46 (30) : 5485 - 5487
  • [12] A flexible photoelectrode for CdS/CdSe quantum dot-sensitized solar cells (QDSSCs)
    Huang, Xiaoming
    Huang, Shuqing
    Zhang, Quanxin
    Guo, Xiaozhi
    Li, Dongmei
    Luo, Yanhong
    Shen, Qing
    Toyoda, Tara
    Meng, Qingbo
    CHEMICAL COMMUNICATIONS, 2011, 47 (09) : 2664 - 2666
  • [13] Improved performance of CdS/CdSe quantum dot-sensitized solar cells using Mn-doped PbS quantum dots as a catalyst in the counter electrode
    Kim, Byung-Man
    Son, Min-Kyu
    Kim, Soo-Kyoung
    Hong, Na-Yeong
    Park, Songyi
    Jeong, Myeong-Soo
    Seo, Hyunwoong
    Prabakar, Kandasamy
    Kim, Hee-Je
    ELECTROCHIMICA ACTA, 2014, 117 : 92 - 98
  • [14] Improved performance of quantum dot-sensitized solar cells by full-spectrum utilization
    Li, Wenhui
    Yang, Xijia
    Wang, Liying
    Zhang, Xueyu
    Li, Xuesong
    Lue, Wei
    SUPERLATTICES AND MICROSTRUCTURES, 2020, 148
  • [15] Morphologically controlled electrodeposition of CdSe on mesoporous TiO2 film for quantum dot-sensitized solar cells
    Song, Xiaohui
    Wang, Minqiang
    Zhang, Hao
    Deng, Jianping
    Yang, Zhi
    Ran, Chenxin
    Yao, Xi
    ELECTROCHIMICA ACTA, 2013, 108 : 449 - 457
  • [16] Recent Development of Quantum Dot Deposition in Quantum Dot-Sensitized Solar Cells
    Li, Ziwei
    Pan, Zhenxiao
    Zhong, Xinhua
    TRANSACTIONS OF TIANJIN UNIVERSITY, 2022, 28 (05) : 374 - 384
  • [17] Performance of CdS/CdSe/ZnS quantum dot-sensitized TiO2 mesopores for solar cells
    Tung Ha Thanh
    Quang Vinh Lam
    Thai Hoang Nguyen
    Thanh Dat Huynh
    CHINESE OPTICS LETTERS, 2013, 11 (07)
  • [18] Enhanced performance of CdS/CdSe quantum dot-sensitized solar cells by long-persistence phosphors structural layer
    Deng, Yunlong
    Lu, Shuqi
    Xu, Zhiyuan
    Zhang, Jiachi
    Ma, Fei
    Peng, Shanglong
    SCIENCE CHINA-MATERIALS, 2020, 63 (04) : 516 - 523
  • [19] The improvement on the performance of quantum dot-sensitized solar cells with functionalized Si
    Seo, Hyunwoong
    Wang, Yuting
    Sato, Muneharu
    Uchida, Giichiro
    Koga, Kazunori
    Itagaki, Naho
    Kamataki, Kunihiro
    Shiratani, Masaharu
    THIN SOLID FILMS, 2013, 546 : 284 - 288
  • [20] Quaternary Cu2ZnSnS4 quantum dot-sensitized solar cells: Synthesis, passivation and ligand exchange
    Bai, Bing
    Kou, Dongxing
    Zhou, Wenhui
    Zhou, Zhengji
    Tian, Qingwen
    Meng, Yuena
    Wu, Sixin
    JOURNAL OF POWER SOURCES, 2016, 318 : 35 - 40