Identification and annotation of newly conserved microRNAs and their targets in wheat (Triticum aestivum L.)

被引:18
|
作者
Achakzai, Habibullah Khan [1 ]
Barozai, Muhammad Younas Khan [1 ]
Din, Muhammad [1 ]
Baloch, Iftekhar Ahmed [1 ]
Achakzai, Abdul Kabir Khan [1 ]
机构
[1] Univ Balochistan, Dept Bot, Quetta, Balochistan, Pakistan
来源
PLOS ONE | 2018年 / 13卷 / 07期
关键词
CYTOCHROME-C; STRESS TOLERANCE; DROUGHT STRESS; ARABIDOPSIS; GENES; PLANTS; OVEREXPRESSION; BIOGENESIS; DIVERGENCE; METABOLISM;
D O I
10.1371/journal.pone.0200033
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
MicroRNAs (miRNAs) are small, non-coding and regulatory RNAs produce by cell endogenously. They are 18-26 nucleotides in length and play important roles at the posttranscriptional stage of gene regulation. Evolutionarily, miRNAs are conserved and their conservation plays an important role in the prediction of new miRNAs in different plants. Wheat (Triticum aestivum L.) is an important diet and consumed as second major crop in the world. This significant cereal crop was focused here through comparative genomics-based approach to identify new conserved miRNAs and their targeted genes. This resulted into a total of 212 new conserved precursor miRNAs (pre-miRNAs) belonging to 185 miRNA families. These newly profiled wheat's miRNAs are also annotated for stem-loop secondary structures, length distribution, organ of expression, sense/antisense orientation and characterization from their expressed sequence tags (ESTs). Moreover, fifteen miRNAs along with housekeeping gene were randomly selected and subjected to RT-PCR expressional validation. A total of 32927 targets are also predicted and annotated for these newly profiled wheat miRNAs. These targets are found to involve in 50 gene ontology (GO) enrichment terms and significant processes. Some of the significant targets are RNA-dependent DNA replication (GO:0006278), RNA binding (GO:0003723), nucleic acid binding (GO:0003676), DNA-directed RNA polymerase activity (GO:0003899), magnesium ion transmembrane transporter activity (GO:0015095), antiporter activity (GO:0015297), solute:hydrogen antiporter activity (GO:0015299), protein kinase activity (GO:0004672), ATP binding (GO:0005524), regulation of Rab GTPase activity (GO:0032313) Rab GTPase activator activity (GO:0005097), regulation of signal transduction (GO:0009966) and phosphoprotein phosphatase inhibitor activity (GO:0004864). These findings will be helpful to manage this economically important grain plant for desirable traits through miRNAs regulation.
引用
收藏
页数:16
相关论文
共 50 条
  • [31] Identification of conserved MicroRNAs and their targets in Phalaenopsis orchid
    Wang, J.
    Wang, J.
    Zhang, C.
    Yan, Y.
    Wu, W.
    Ma, Z.
    RUSSIAN JOURNAL OF PLANT PHYSIOLOGY, 2013, 60 (06) : 845 - 854
  • [32] Phenotypic and Molecular Responses of Wheat (Triticum aestivum L.) to Chronic Gamma Irradiation
    Hong, M. J.
    Yoon, Y. H.
    Kim, D. S.
    Kim, S. H.
    Kang, S. Y.
    Kim, D. Y.
    Seo, Y. W.
    Kim, J. B.
    JOURNAL OF AGRICULTURAL SCIENCE AND TECHNOLOGY, 2018, 20 (01): : 167 - 178
  • [33] Molecular characterization of salinity tolerance in wheat (Triticum aestivum L.)
    Bhutta, Waqas Manzoor
    Amjad, Muhammad
    ARCHIVES OF AGRONOMY AND SOIL SCIENCE, 2015, 61 (11) : 1641 - 1648
  • [34] Genome-wide identification and characterization of UBP gene family in wheat (Triticum aestivum L. )
    Xu, Miaoze
    Jin, Peng
    Liu, Tingting
    Gao, Shiqi
    Zhang, Tianye
    Zhang, Fan
    Han, Xiaolei
    He, Long
    Chen, Jianping
    Yang, Jian
    PEERJ, 2021, 9
  • [35] Genome-wide identification and analysis of the COI gene family in wheat (Triticum aestivum L.)
    Bai, Jian-fang
    Wang, Yu-kun
    Wang, Peng
    Yuan, Shao-hua
    Gao, Jian-gang
    Duan, Wen-jing
    Wang, Na
    Zhang, Feng-ting
    Zhang, Wen-jie
    Qin, Meng-ying
    Zhao, Chang-ping
    Zhang, Li-ping
    BMC GENOMICS, 2018, 19
  • [36] Identification and Characterization of DNA Demethylase Genes and Their Association With Thermal Stress in Wheat (Triticum aestivum L.)
    Gahlaut, Vijay
    Samtani, Harsha
    Gautam, Tinku
    Khurana, Paramjit
    FRONTIERS IN GENETICS, 2022, 13
  • [37] Genome-Wide Identification and Characterization of the OPR Gene Family in Wheat (Triticum aestivum L.)
    Mou, Yifei
    Liu, Yuanyuan
    Tian, Shujun
    Guo, Qiping
    Wang, Chengshe
    Wen, Shanshan
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2019, 20 (08)
  • [38] Identification of novel microRNAs and their target genes associated with stress-tolerant phytohormones in wheat (Triticum aestivum L.) during leaf rust pathogenesis
    Afreen, Uzma
    Mukhopadhyay, Kunal
    Kumar, Manish
    JOURNAL OF PLANT DISEASES AND PROTECTION, 2025, 132 (01)
  • [39] PGPR isolated from hot spring imparts resilience to drought stress in wheat ( Triticum aestivum L.)
    Ali, Nilofer
    Pati, Aparna Maitra
    PLANT PHYSIOLOGY AND BIOCHEMISTRY, 2024, 215
  • [40] IDENTIFICATION OF MICRORNAS AND THEIR TARGETS IN ARTEMISIA ANNUA L.
    Barozai, Muhammad Younas Khan
    PAKISTAN JOURNAL OF BOTANY, 2013, 45 (02) : 461 - 465