Dispersion Properties of Explicit Finite Element Methods for Wave Propagation Modelling on Tetrahedral Meshes

被引:14
作者
Geevers, S. [1 ]
Mulder, W. A. [2 ,3 ]
van der Vegt, J. J. W. [1 ]
机构
[1] Univ Twente, Dept Appl Math, Enschede, Netherlands
[2] Shell Global Solut Int BV, Amsterdam, Netherlands
[3] Delft Univ Technol, Delft, Netherlands
关键词
Tetrahedral mesh; Explicit finite element method; Mass lumping; Discontinuous Galerkin method; Wave equation; Dispersion analysis; DISCONTINUOUS GALERKIN METHOD; HIGH-ORDER;
D O I
10.1007/s10915-018-0709-7
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We analyse the dispersion properties of two types of explicit finite element methods for modelling acoustic and elastic wave propagation on tetrahedral meshes, namely mass-lumped finite element methods and symmetric interior penalty discontinuous Galerkin methods, both combined with a suitable Lax-Wendroff time integration scheme. The dispersion properties are obtained semi-analytically using standard Fourier analysis. Based on the dispersion analysis, we give an indication of which method is the most efficient for a given accuracy, how many elements per wavelength are required for a given accuracy, and how sensitive the accuracy of the method is to poorly shaped elements.
引用
收藏
页码:372 / 396
页数:25
相关论文
共 36 条
[21]  
Komatitsch D, 1998, B SEISMOL SOC AM, V88, P368
[22]   DIFFERENCE SCHEMES FOR HYPERBOLIC EQUATIONS WITH HIGH ORDER OF ACCURACY [J].
LAX, PD ;
WENDROFF, B .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1964, 17 (03) :381-&
[24]   Dispersion analysis of the spectral element method using a triangular mesh [J].
Liu, Tao ;
Sen, Mrinal K. ;
Hu, Tianyue ;
De Basabe, Jonas D. ;
Li, Lin .
WAVE MOTION, 2012, 49 (04) :474-483
[25]   Higher-order triangular spectral element method with optimized cubature points for seismic wavefield modeling [J].
Liu, Youshan ;
Teng, Jiwen ;
Xu, Tao ;
Badal, Jose .
JOURNAL OF COMPUTATIONAL PHYSICS, 2017, 336 :458-480
[26]   Time-stepping stability of continuous and discontinuous finite-element methods for 3-D wave propagation [J].
Mulder, W. A. ;
Zhebel, E. ;
Minisini, S. .
GEOPHYSICAL JOURNAL INTERNATIONAL, 2014, 196 (02) :1123-1133
[27]   Spurious modes in finite-element discretizations of the wave equation may not be all that bad [J].
Mulder, WA .
APPLIED NUMERICAL MATHEMATICS, 1999, 30 (04) :425-445
[28]  
Mulder WA, 1996, NUMERICAL METHODS IN ENGINEERING '96, P344
[29]   NEW TRIANGULAR MASS-LUMPED FINITE ELEMENTS OF DEGREE SIX FOR WAVE PROPAGATION [J].
Mulder, William A. .
PROGRESS IN ELECTROMAGNETICS RESEARCH-PIER, 2013, 141 :671-692
[30]  
Owen S. J., 1998, P 7 INT MESH ROUNDT, P239