Dispersion Properties of Explicit Finite Element Methods for Wave Propagation Modelling on Tetrahedral Meshes

被引:14
作者
Geevers, S. [1 ]
Mulder, W. A. [2 ,3 ]
van der Vegt, J. J. W. [1 ]
机构
[1] Univ Twente, Dept Appl Math, Enschede, Netherlands
[2] Shell Global Solut Int BV, Amsterdam, Netherlands
[3] Delft Univ Technol, Delft, Netherlands
关键词
Tetrahedral mesh; Explicit finite element method; Mass lumping; Discontinuous Galerkin method; Wave equation; Dispersion analysis; DISCONTINUOUS GALERKIN METHOD; HIGH-ORDER;
D O I
10.1007/s10915-018-0709-7
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We analyse the dispersion properties of two types of explicit finite element methods for modelling acoustic and elastic wave propagation on tetrahedral meshes, namely mass-lumped finite element methods and symmetric interior penalty discontinuous Galerkin methods, both combined with a suitable Lax-Wendroff time integration scheme. The dispersion properties are obtained semi-analytically using standard Fourier analysis. Based on the dispersion analysis, we give an indication of which method is the most efficient for a given accuracy, how many elements per wavelength are required for a given accuracy, and how sensitive the accuracy of the method is to poorly shaped elements.
引用
收藏
页码:372 / 396
页数:25
相关论文
共 36 条
[1]   Dispersive and dissipative properties of discontinuous Galerkin finite element methods for the second-order wave equation [J].
Ainsworth, M. ;
Monk, P. ;
Muniz, W. .
JOURNAL OF SCIENTIFIC COMPUTING, 2006, 27 (1-3) :5-40
[2]   Dispersive and dissipative behaviour of high order discontinuous Galerkin finite element methods [J].
Ainsworth, M .
JOURNAL OF COMPUTATIONAL PHYSICS, 2004, 198 (01) :106-130
[3]  
[Anonymous], 1973, Tech. Rep.
[4]   High order discontinuous Galerkin methods on simplicial elements for the elastodynamics equation [J].
Antonietti, Paola F. ;
Marcati, Carlo ;
Mazzieri, Ilario ;
Quarteroni, Alfio .
NUMERICAL ALGORITHMS, 2016, 71 (01) :181-206
[5]  
Basabe J. D. D., 2010, GEOPHYS J INT, V181, P577, DOI DOI 10.1111/J.1365-246X.2010.04536.X
[6]  
Boffi D, 2010, ACTA NUMER, V19, P1, DOI 10.1017/S0962492910000012
[7]   Higher-order triangular and tetrahedral finite elements with mass lumping for solving the wave equation [J].
Chin-Joe-Kong, MJS ;
Mulder, WA ;
Van Veldhuizen, M .
JOURNAL OF ENGINEERING MATHEMATICS, 1999, 35 (04) :405-426
[8]   TVB RUNGE-KUTTA LOCAL PROJECTION DISCONTINUOUS GALERKIN FINITE-ELEMENT METHOD FOR CONSERVATION-LAWS .2. GENERAL FRAMEWORK [J].
COCKBURN, B ;
SHU, CW .
MATHEMATICS OF COMPUTATION, 1989, 52 (186) :411-435
[9]  
COHEN G, 1995, SIAM PROC S, P270
[10]  
Cohen G., 2002, HIGHER ORDER NUMERIC