A Cognitive Brain-Computer Interface for Patients with Amyotrophic Lateral Sclerosis

被引:1
|
作者
Hohmann, Matthias R. [1 ,2 ]
Fomina, Tatiana [1 ,2 ]
Jayaram, Vinay [1 ,2 ]
Widmann, Natalie [1 ]
Foerster, Christian [1 ]
vom Hagen, Jennifer Mueller [3 ]
Synofzik, Matthis [3 ]
Schoelkopf, Bernhard [1 ]
Schoels, Ludger [3 ]
Grosse-Wentrup, Moritz [1 ]
机构
[1] Max Planck Inst Intelligent Syst, Dept Empir Inference, D-72076 Tubingen, Germany
[2] Int Max Planck Res Sch Cognit & Syst Neurosci, D-72074 Tubingen, Germany
[3] Hertie Inst Clin Brain Res, Dept Clin Neurogenet, D-72076 Tubingen, Germany
来源
2015 IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN, AND CYBERNETICS (SMC 2015): BIG DATA ANALYTICS FOR HUMAN-CENTRIC SYSTEMS | 2015年
关键词
EEG; brain-computer interface; brain-machine interface; ALS; locked-in; DEFAULT MODE NETWORK; ELECTROMYOGENIC ARTIFACTS; CORTEX; ALS;
D O I
10.1109/SMC.2015.553
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
Brain-computer interfaces (BCIs) are often based on the control of sensorimotor processes, yet sensorimotor processes are impaired in patients suffering from amyotrophic lateral sclerosis (ALS). We devised a new paradigm that targets higher-level cognitive processes to transmit information from the user to the BCI. We instructed five ALS patients and eleven healthy subjects to either activate self-referential memories or to focus on processes without mnemonic content, while recording a high-density electroencephalogram (EEG). Both tasks are likely to modulate activity in the default mode network (DMN) without involving sensorimotor pathways. We find that the two tasks can be distinguished from bandpower modulations in the theta- (3-7 Hz) and alpha-range (8-13 Hz) in fronto-parietal areas, consistent with modulation of neural activity in primary nodes of the DMN. Training a support vector machine (SVM) to discriminate the two tasks on theta-and alpha-power in the precuneus, as estimated by a beamforming procedure, resulted in above chance-level decoding accuracy after only one experimental session. Therefore, the presented work could serve as a basis for a novel tool which allows for simple, reliable communication with patients in late stages of ALS.
引用
收藏
页码:3187 / 3191
页数:5
相关论文
共 50 条
  • [1] A cognitive brain-computer interface for patients with amyotrophic lateral sclerosis
    Hohmann, M. R.
    Fomina, T.
    Jayaram, V.
    Widmann, N.
    Foerster, C.
    Just, J.
    Synofzik, M.
    Schoelkopf, B.
    Schoels, L.
    Grosse-Wentrup, M.
    BRAIN-COMPUTER INTERFACES: LAB EXPERIMENTS TO REAL-WORLD APPLICATIONS, 2016, 228 : 221 - 239
  • [2] A visual brain-computer interface as communication aid for patients with amyotrophic lateral sclerosis
    Verbaarschot, Ceci
    Lutu, Andreea
    Borhanazad, Marzieh
    Thielen, Jordy
    Broek, Philip van den
    Farquhar, Jason
    Weikamp, Janneke
    Raaphorst, Joost
    Groothuis, Jan T.
    Desain, Peter
    Tump, Danielle
    CLINICAL NEUROPHYSIOLOGY, 2021, 132 (10) : 2404 - 2415
  • [3] Covert Visuospatial Attention Orienting in a Brain-Computer Interface for Amyotrophic Lateral Sclerosis Patients
    Marchetti, Mauro
    Piccione, Francesco
    Silvoni, Stefano
    Gamberini, Luciano
    Priftis, Konstantinos
    NEUROREHABILITATION AND NEURAL REPAIR, 2013, 27 (05) : 430 - 438
  • [4] Amyotrophic lateral sclerosis progression and stability of brain-computer interface communication
    Silvoni, Stefano
    Cavinato, Marianna
    Volpato, Chiara
    Ruf, Carolin A.
    Birbaumer, Niels
    Piccione, Francesco
    AMYOTROPHIC LATERAL SCLEROSIS AND FRONTOTEMPORAL DEGENERATION, 2013, 14 (5-6) : 390 - 396
  • [5] Brain-computer interfaces for amyotrophic lateral sclerosis
    McFarland, Dennis J.
    MUSCLE & NERVE, 2020, 61 (06) : 702 - 707
  • [6] Performance predictors of brain-computer interfaces in patients with amyotrophic lateral sclerosis
    Geronimo, A.
    Simmons, Z.
    Schiff, S. J.
    JOURNAL OF NEURAL ENGINEERING, 2016, 13 (02)
  • [7] Brain-computer interface for amyotrophic lateral sclerosis patients using deep learning network
    Ramakrishnan, Jayabrabu
    Mavaluru, Dinesh
    Sivasakthivel, Ramkumar
    Alqahtani, Abdulrahman Saad
    Mubarakali, Azath
    Retnadhas, Mervin
    NEURAL COMPUTING & APPLICATIONS, 2022, 34 (16) : 13439 - 13453
  • [8] Brain-computer interfaces in amyotrophic lateral sclerosis: A metanalysis
    Marchetti, Mauro
    Priftis, Konstantinos
    CLINICAL NEUROPHYSIOLOGY, 2015, 126 (06) : 1255 - 1263
  • [9] Acceptance of brain-computer interfaces in amyotrophic lateral sclerosis
    Geronimo, Andrew
    Stephens, Helen E.
    Schiff, Steven J.
    Simmons, Zachary
    AMYOTROPHIC LATERAL SCLEROSIS AND FRONTOTEMPORAL DEGENERATION, 2015, 16 (3-4) : 258 - 264
  • [10] Daily Assistance for Amyotrophic Lateral Sclerosis Patients Based on a Wearable Multimodal Brain-Computer Interface Mouse
    Jiang, Ya
    Li, Kendi
    Liang, Yuankai
    Chen, Di
    Tan, Mingkui
    Li, Yuanqing
    IEEE TRANSACTIONS ON NEURAL SYSTEMS AND REHABILITATION ENGINEERING, 2025, 33 : 150 - 161