Detection of low cycle fatigue in type 316 stainless steel using HTS-SQUID

被引:2
|
作者
Park, DG
Kim, DW
Timofeev, VP
Hong, JH
机构
[1] Korea Atom Energy Res Inst, Taejon 305600, South Korea
[2] Verkin Inst Low Temp Phys & Eng, UA-61103 Kharkov, Ukraine
来源
ADVANCES IN NONDESTRUCTIVE EVALUATION, PT 1-3 | 2004年 / 270-273卷
关键词
type; 316; steel; low cycle fatigue; HTS SQUID; magnetic moment; susceptometer;
D O I
10.4028/www.scientific.net/KEM.270-273.1224
中图分类号
TQ174 [陶瓷工业]; TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
A portable RF HTS SQUID-based susceptometer was applied to the measurement of fatigue behavior for type 316L(N) stainless steel containing 0.04% to 0.15% nitrogen content. Strain-controlled low cycle fatigue (LCF) tests were conducted at RT and 600 degreesC in air an atmosphere, and the magnetic moments were measured after the fatigue test using HTS SQUID. The magnetic moment of an as-received sample is higher than that of a fatigued sample in all the temperature ranges irrespective of the nitrogen content. The fatigue life decreased with an increasing test temperature up to 500 degreesC, but increased at 600 degreesC. The change of magnetic moments by LCF test is attributed to the stress induced micro defects.
引用
收藏
页码:1224 / 1228
页数:5
相关论文
共 50 条
  • [31] EFFECTS OF TEMPERATURE ON THE LOW-CYCLE FATIGUE BEHAVIOR OF NITROGEN ALLOYED TYPE 316L STAINLESS-STEEL
    SRINIVASAN, VS
    SANDHYA, R
    RAO, KBS
    MANNAN, SL
    RAGHAVAN, KS
    INTERNATIONAL JOURNAL OF FATIGUE, 1991, 13 (06) : 471 - 478
  • [32] Feasibility study of contaminant detection for food with ULF-NMR/MRI system using HTS-SQUID
    Hatsukade, Yoshimi
    Tsunaki, Shingo
    Yamamoto, Masaaki
    Abe, Takayuki
    Hatta, Junichi
    Tanaka, Saburo
    PHYSICA C-SUPERCONDUCTIVITY AND ITS APPLICATIONS, 2013, 494 : 199 - 202
  • [33] High-resolution geomagnetic observation system using HTS-SQUID
    Katori, Yuta
    Isogami, Shinji
    Hato, Tsunehiro
    Tsukamoto, Akira
    Tanabe, Keiichi
    Ohnishi, Nobuhito
    Furukawa, Chikara
    Okubo, Kan
    IEICE COMMUNICATIONS EXPRESS, 2018, 7 (03): : 71 - 76
  • [34] Extremely low cycle fatigue tests on structural carbon steel and stainless steel
    Nip, K. H.
    Gardner, L.
    Davies, C. M.
    Elghazouli, A. Y.
    JOURNAL OF CONSTRUCTIONAL STEEL RESEARCH, 2010, 66 (01) : 96 - 110
  • [36] Loading sequence effect on fatigue life of Type 316 stainless steel
    Kamaya, Masayuki
    Kawakubo, Masahiro
    INTERNATIONAL JOURNAL OF FATIGUE, 2015, 81 : 10 - 20
  • [37] Eddy Current Testing System Using HTS-SQUID With External Pickup Coil Made of HTS Wire
    Tsukamoto, Akira
    Hato, Tsunehiro
    Adachi, Seiji
    Oshikubo, Yasuo
    Cheng, Weiying
    Enpuku, Keiji
    Tsukada, Keiji
    Tanabe, Keiichi
    IEEE TRANSACTIONS ON APPLIED SUPERCONDUCTIVITY, 2017, 27 (04)
  • [38] Low cycle fatigue and creep-fatigue interaction behaviour of 316L(N) stainless steel and its welds
    M. Valsan
    A. Nagesha
    Transactions of the Indian Institute of Metals, 2010, 63 : 209 - 215
  • [39] Understanding low cycle fatigue and creep-fatigue interaction behavior of 316 L(N) stainless steel weld joint
    Shankar, Vani
    Mariappan, K.
    Sandhya, R.
    Laha, K.
    INTERNATIONAL JOURNAL OF FATIGUE, 2016, 82 : 487 - 496
  • [40] The Effect of Nitrogen Alloying on the Low Cycle Fatigue and Creep-Fatigue Interaction Behavior of 316LN Stainless Steel
    Reddy, G. V. Prasad
    Sandhya, R.
    Mathew, M. D.
    Sankaran, S.
    CENTURY OF STAINLESS STEELS, 2013, 794 : 441 - +