Current applications of big data and machine learning in cardiology

被引:69
作者
Cuocolo, Renato [1 ]
Perillo, Teresa [1 ]
De Rosa, Eliana [2 ]
Ugga, Lorenzo [1 ]
Petretta, Mario [2 ]
机构
[1] Univ Naples Federico II, Dept Adv Biomed Sci, Naples, Italy
[2] Univ Naples Federico II, Dept Translat Med Sci, Naples, Italy
关键词
Cardiac imaging techniques; Cardiology; Electrocardiography; Machine learning; Review; ARTIFICIAL-INTELLIGENCE; FUTURE; HEART;
D O I
10.11909/j.issn.1671-5411.2019.08.002
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Machine learning (ML) is a software solution with the ability of making predictions without prior explicit programming, aiding in the analysis of large amounts of data. These algorithms can be trained through supervised or unsupervised learning. Cardiology is one of the fields of medicine with the highest interest in its applications. They can facilitate every step of patient care, reducing the margin of error and contributing to precision medicine. In particular, ML has been proposed for cardiac imaging applications such as automated computation of scores, differentiation of prognostic phenotypes, quantification of heart function and segmentation of the heart. These tools have also demonstrated the capability of performing early and accurate detection of anomalies in electrocardiographic exams. ML algorithms can also contribute to cardiovascular risk assessment in different settings and perform predictions of cardiovascular events. Another interesting research avenue in this field is represented by genomic assessment of cardiovascular diseases. Therefore, ML could aid in making earlier diagnosis of disease, develop patient-tailored therapies and identify predictive characteristics in different pathologic conditions, leading to precision cardiology.
引用
收藏
页码:601 / 607
页数:7
相关论文
共 51 条
[1]   Cardiovascular disease risk prediction using automated machine learning: A prospective study of 423,604 UK Biobank participants [J].
Alaa, Ahmed M. ;
Bolton, Thomas ;
Di Angelantonio, Emanuele ;
Rudd, James H. F. ;
van der Schaar, Mihaela .
PLOS ONE, 2019, 14 (05)
[2]   Screening for cardiac contractile dysfunction using an artificial intelligence-enabled electrocardiogram [J].
Attia, Zachi I. ;
Kapa, Suraj ;
Lopez-Jimenez, Francisco ;
McKie, Paul M. ;
Ladewig, Dorothy J. ;
Satam, Gaurav ;
Pellikka, Patricia A. ;
Enriquez-Sarano, Maurice ;
Noseworthy, Peter A. ;
Munger, Thomas M. ;
Asirvatham, Samuel J. ;
Scott, Christopher G. ;
Carter, Rickey E. ;
Friedman, Paul A. .
NATURE MEDICINE, 2019, 25 (01) :70-+
[3]   Identifying Ventricular Arrhythmias and Their Predictors by Applying Machine Learning Methods to Electronic Health Records in Patients With Hypertrophic Cardiomyopathy (HCM-VAr-Risk Model) [J].
Bhattacharya, Moumita ;
Lu, Dai-Yin ;
Kudchadkar, Shibani M. ;
Greenland, Gabriela Villarreal ;
Lingamaneni, Prasanth ;
Corona-Villalobos, Celia P. ;
Guan, Yufan ;
Marine, Joseph E. ;
Olgin, Jeffrey E. ;
Zimmerman, Stefan ;
Abraham, Theodore P. ;
Shatkay, Hagit ;
Abraham, Maria Roselle .
AMERICAN JOURNAL OF CARDIOLOGY, 2019, 123 (10) :1681-1689
[4]   Neural/Bayes network predictor for inheritable cardiac disease pathogenicity and phenotype [J].
Burghardt, Thomas P. ;
Ajtai, Katalin .
JOURNAL OF MOLECULAR AND CELLULAR CARDIOLOGY, 2018, 119 :19-27
[5]   Deep-Learning Convolutional Neural Networks Accurately Classify Genetic Mutations in Gliomas [J].
Chang, P. ;
Grinband, J. ;
Weinberg, B. D. ;
Bardis, M. ;
Khy, M. ;
Cadena, G. ;
Su, M. -Y. ;
Cha, S. ;
Filippi, C. G. ;
Bota, D. ;
Baldi, P. ;
Poisson, L. M. ;
Jain, R. ;
Chow, D. .
AMERICAN JOURNAL OF NEURORADIOLOGY, 2018, 39 (07) :1201-1207
[6]   Computer-aided diagnosis for classifying benign versus malignant thyroid nodules based on ultrasound images: A comparison with radiologist-based assessments [J].
Chang, Yongjun ;
Paul, Anjan Kumar ;
Kim, Namkug ;
Baek, Jung Hwan ;
Choi, Young Jun ;
Ha, Eun Ju ;
Lee, Kang Dae ;
Lee, Hyoung Shin ;
Shin, DaeSeock ;
Kim, Nakyoung .
MEDICAL PHYSICS, 2016, 43 (01) :554-567
[7]   Current Applications and Future Impact of Machine Learning in Radiology [J].
Choy, Garry ;
Khalilzadeh, Omid ;
Michalski, Mark ;
Do, Synho ;
Samir, Anthony E. ;
Pianykh, Oleg S. ;
Geis, J. Raymond ;
Pandharipande, Pari V. ;
Brink, James A. ;
Dreyer, Keith J. .
RADIOLOGY, 2018, 288 (02) :318-328
[8]   Towards automatic pulmonary nodule management in lung cancer screening with deep learning [J].
Ciompi, Francesco ;
Chung, Kaman ;
van Riel, Sarah J. ;
Setio, Arnaud Arindra Adiyoso ;
Gerke, Paul K. ;
Jacobs, Colin ;
Scholten, Ernst Th. ;
Schaefer-Prokop, Cornelia ;
Wille, Mathilde M. W. ;
Marchiano, Alfonso ;
Pastorino, Ugo ;
Prokop, Mathias ;
van Ginneken, Bram .
SCIENTIFIC REPORTS, 2017, 7
[9]  
Cuocolo R., 2018, HEAL MANAG J, V18, P484
[10]   Predictors of in-hospital length of stay among cardiac patients: A machine learning approach [J].
Daghistani, Tahani A. ;
Elshawi, Radwa ;
Sakr, Sherif ;
Ahmed, Amjad M. ;
Al-Thwayee, Abdullah ;
Al-Mallah, Mouaz H. .
INTERNATIONAL JOURNAL OF CARDIOLOGY, 2019, 288 :140-147