Ulam-Hyers-Rassias stability for generalized fractional differential equations

被引:9
作者
Boucenna, Djalal [1 ]
Ben Makhlouf, Abdellatif [2 ,3 ]
El-hady, El-sayed [2 ,4 ]
Hammami, Mohamed Ali [3 ]
机构
[1] High Sch Technol Teaching, Enset, Skikda, Algeria
[2] Jouf Univ, Coll Sci, Math Dept, POB 2014, Sakaka, Saudi Arabia
[3] Univ Sfax, Fac Sci Sfax, Dept Math, Sfax, Tunisia
[4] Suez Canal Univ, Fac Comp & Informat, Basic Sci Dept, Ismailia, Egypt
关键词
nonlinear fractional differential equations; Ulam– Hyers– Rassias stability; generalized fractional derivative; FIXED-POINT APPROACH; FUNCTIONAL-EQUATIONS; PART;
D O I
10.1002/mma.7406
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we present a generalized Gronwall inequality with singularity. Using this inequality, we investigate the existence, uniqueness, and Ulam-Hyers-Rassias stability for solutions of a class of generalized nonlinear fractional differential equations of order alpha (1 < alpha < 2). In this way, we improve and generalize several earlier outcomes.
引用
收藏
页码:10267 / 10280
页数:14
相关论文
共 41 条
[1]   Fractional Differential Equations With Dependence on the Caputo-Katugampola Derivative [J].
Almeida, Ricardo ;
Malinowska, Agnieszka B. ;
Odzijewicz, Tatiana .
JOURNAL OF COMPUTATIONAL AND NONLINEAR DYNAMICS, 2016, 11 (06)
[2]  
[Anonymous], 2012, ABSTRACT APPL ANAL, DOI [10.1155/2012/716936, DOI 10.1155/2012/716936]
[3]  
Aoki T., 1950, J MATH SOC JAPAN, V2, P64, DOI DOI 10.2969/JMSJ/00210064
[4]   THE STABILITY OF CERTAIN FUNCTIONAL-EQUATIONS [J].
BAKER, JA .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1991, 112 (03) :729-732
[5]   Chaos analysis and asymptotic stability of generalized Caputo fractional differential equations [J].
Baleanu, Dumitru ;
Wu, Guo-Cheng ;
Zeng, Sheng-Da .
CHAOS SOLITONS & FRACTALS, 2017, 102 :99-105
[6]   Existence and Stability Results for Generalized Fractional Differential Equations [J].
Ben Makhlouf, A. ;
Boucenna, D. ;
Hammami, M. A. .
ACTA MATHEMATICA SCIENTIA, 2020, 40 (01) :141-154
[7]   Finite-Time Stability of Linear Caputo-Katugampola Fractional-Order Time Delay Systems [J].
Ben Makhlouf, Abdellatif ;
Nagy, A. M. .
ASIAN JOURNAL OF CONTROL, 2020, 22 (01) :297-306
[8]  
Ben Makhlouf A, 2018, MATH COMMUN, V23, P119
[9]  
Boroomand A, 2009, LECT NOTES COMPUT SC, V5506, P883, DOI 10.1007/978-3-642-02490-0_108
[10]   LINEARIZED STABILITY ANALYSIS OF CAPUTO-KATUGAMPOLA FRACTIONAL-ORDER NONLINEAR SYSTEMS [J].
Boucenna, D. ;
Ben Makhlouf, A. ;
Naifar, O. ;
Guezane-Lakoud, A. ;
Hammami, M. A. .
JOURNAL OF NONLINEAR FUNCTIONAL ANALYSIS, 2018, 2018