Multivariate copula quantile mapping for bias correction of reanalysis air temperature data

被引:4
作者
Alidoost, Fakhereh [1 ]
Stein, Alfred [1 ]
Su, Zhongbo [1 ]
Sharifi, Ali [1 ]
机构
[1] Univ Twente, ITC, Enschede, Netherlands
关键词
Bias correction; copula; conditional; mean temperature; data scarce; ELEVATION CORRECTION; PRECIPITATION; MODEL; ASSIMILATION;
D O I
10.1080/14498596.2019.1601138
中图分类号
P9 [自然地理学];
学科分类号
0705 ; 070501 ;
摘要
Reanalysis data retrieved from the European Centre for Medium-range Weather Forecasts (ECMWF) are commonly used for hydrological studies. Their use requires bias correction, defined as the difference between reanalysis values and measurements. We propose three multivariate copula quantile mappings (MCQMs) to predict bias-corrected values at unvisited locations. We apply the methods to the Qazvin Plain, Iran, for daily air temperature retrieved from weather stations and the ECMWF archive. Results showed that MCQMs reduced bias by 46% as compared with classical quantile mapping. The study concludes that MCQMs are well able to represent the spatial and temporal variation of air temperature.
引用
收藏
页码:299 / 315
页数:17
相关论文
共 38 条
  • [1] Pair-copula constructions of multiple dependence
    Aas, Kjersti
    Czado, Claudia
    Frigessi, Arnoldo
    Bakken, Henrik
    [J]. INSURANCE MATHEMATICS & ECONOMICS, 2009, 44 (02) : 182 - 198
  • [2] NEW LOOK AT STATISTICAL-MODEL IDENTIFICATION
    AKAIKE, H
    [J]. IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1974, AC19 (06) : 716 - 723
  • [3] Berrisford P, 2009, ERA REPORT SERIES EU
  • [4] Brechmann EC, 2013, J STAT SOFTW, V52
  • [5] The ERA-Interim reanalysis: configuration and performance of the data assimilation system
    Dee, D. P.
    Uppala, S. M.
    Simmons, A. J.
    Berrisford, P.
    Poli, P.
    Kobayashi, S.
    Andrae, U.
    Balmaseda, M. A.
    Balsamo, G.
    Bauer, P.
    Bechtold, P.
    Beljaars, A. C. M.
    van de Berg, L.
    Bidlot, J.
    Bormann, N.
    Delsol, C.
    Dragani, R.
    Fuentes, M.
    Geer, A. J.
    Haimberger, L.
    Healy, S. B.
    Hersbach, H.
    Holm, E. V.
    Isaksen, L.
    Kallberg, P.
    Koehler, M.
    Matricardi, M.
    McNally, A. P.
    Monge-Sanz, B. M.
    Morcrette, J. -J.
    Park, B. -K.
    Peubey, C.
    de Rosnay, P.
    Tavolato, C.
    Thepaut, J. -N.
    Vitart, F.
    [J]. QUARTERLY JOURNAL OF THE ROYAL METEOROLOGICAL SOCIETY, 2011, 137 (656) : 553 - 597
  • [6] The t copula and related copulas
    Demarta, S
    McNeil, AJ
    [J]. INTERNATIONAL STATISTICAL REVIEW, 2005, 73 (01) : 111 - 129
  • [7] Evaluation of statistical bias correction methods for numerical weather prediction model forecasts of maximum and minimum temperatures
    Durai, V. R.
    Bhradwaj, Rashmi
    [J]. NATURAL HAZARDS, 2014, 73 (03) : 1229 - 1254
  • [8] MONOTONE PIECEWISE CUBIC INTERPOLATION
    FRITSCH, FN
    CARLSON, RE
    [J]. SIAM JOURNAL ON NUMERICAL ANALYSIS, 1980, 17 (02) : 238 - 246
  • [9] Elevation correction of ERA-Interim temperature data in complex terrain
    Gao, L.
    Bernhardt, M.
    Schulz, K.
    [J]. HYDROLOGY AND EARTH SYSTEM SCIENCES, 2012, 16 (12) : 4661 - 4673
  • [10] Elevation correction of ERA-Interim temperature data in the Tibetan Plateau
    Gao, Lu
    Bernhardt, Matthias
    Schulz, Karsten
    Chen, Xingwei
    [J]. INTERNATIONAL JOURNAL OF CLIMATOLOGY, 2017, 37 (09) : 3540 - 3552