Friction Stir Lap Welding 0.8-mm-Thick 2024 Aluminum Alloy with the Assistance of Stationary Shoulder

被引:5
作者
Dong, Zhibo [1 ]
Yang, Kang [2 ]
Ren, Rong [2 ]
Wang, Guoqiang [2 ]
Wang, Lei [3 ]
Lv, Zan [2 ]
机构
[1] Harbin Inst Technol, State Key Lab Adv Welding & Joining, Harbin 150001, Heilongjiang, Peoples R China
[2] Shenyang Aerosp Univ, Sch Aerosp Engn, Shenyang 110136, Liaoning, Peoples R China
[3] Shenyang Inst Standardizat, Shenyang 110021, Liaoning, Peoples R China
基金
美国国家科学基金会;
关键词
friction stir lap welding; lap shear failure load; sheet thickness reduction; stationary shoulder; MECHANICAL-PROPERTIES; MICROSTRUCTURES; SPEED;
D O I
10.1007/s11665-019-04395-3
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In this work, 0.8-mm-thick 2024 aluminum alloy was friction stir lap welded with the assistance of a stationary shoulder system. The joint surface formation, microstructure and mechanical properties of the welded joints were studied. The results showed that sound joints without defect could be obtained at a wide parameter range because stationary shoulder increased the material flow during welding. The stationary shoulder decreased the joint roughness from 125.5 to 58.9 mu m. A thickness reduction of 4% was achieved at a welding speed of 200 mm/min. The joint fabricated by the stationary shoulder system had superior lap shear properties compared to the joint fabricated using the conventional tool. A high failure load of 7440 N was achieved at welding speed of 200 mm/min. The joint presented tensile fracture mode and the fracture morphology showed typical ductile fracture.
引用
收藏
页码:6704 / 6713
页数:10
相关论文
共 21 条
  • [21] Effect of rotating speed on joint morphology and lap shear properties of stationary shoulder friction stir lap welded 6061-T6 aluminum alloy
    Zhou, Zhenlu
    Yue, Yumei
    Ji, Shude
    Li, Zhengwei
    Zhang, Liguo
    [J]. INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY, 2017, 88 (5-8) : 2135 - 2141