Analytical nuclear gradients of the explicitly correlated Moller-Plesset second-order energy

被引:22
|
作者
Hoefener, Sebastian [1 ]
Klopper, Wim [1 ]
机构
[1] Karlsruhe Inst Technol, Inst Phys Chem, D-76131 Karlsruhe, Germany
关键词
electron correlation; second-order Moller-Plesset perturbation theory; explicitly correlated theory; analytical nuclear gradients; AUXILIARY BASIS-SETS; ELECTRONIC-STRUCTURE THEORY; COUPLED-CLUSTER THEORY; PERTURBATION-THEORY; WAVE-FUNCTIONS; DERIVATIVES; RESOLUTION; IDENTITY; HYDROGEN; ELEMENTS;
D O I
10.1080/00268976.2010.490795
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The analytical computation of nuclear gradients has been derived and implemented for the explicitly correlated second-order Moller-Plesset method (MP2-F12). The implementation has been accomplished in the TURBOMOLE program package for ansatz MP2-F12/2*A. A Slater-type geminal expanded in six Gaussian geminals (STG-6G), a complementary auxiliary basis set (CABS), and robust density fitting approximations are used. In addition, a second-order perturbation theory correction for single excitations into the complementary auxiliary basis set (CABS singles) is included to reduce the Hartree-Fock error. Smooth convergence towards the basis set limit is observed for a selection of molecules. For computations on dimers of weakly interacting molecules in small basis sets, explicitly correlated second-order Moller-Plesset theory outperforms conventional second-order Moller-Plesset theory because basis set superposition errors are largely avoided at the MP2-F12/2*A level.
引用
收藏
页码:1783 / 1796
页数:14
相关论文
共 50 条
  • [1] Analytical energy gradients for explicitly correlated wave functions. I. Explicitly correlated second-order Moller-Plesset perturbation theory
    Gyoerffy, Werner
    Knizia, Gerald
    Werner, Hans-Joachim
    JOURNAL OF CHEMICAL PHYSICS, 2017, 147 (21):
  • [2] Analytical energy gradients for local second-order Moller-Plesset perturbation theory
    El Azhary, A
    Rauhut, G
    Pulay, P
    Werner, HJ
    JOURNAL OF CHEMICAL PHYSICS, 1998, 108 (13): : 5185 - 5193
  • [3] Analytical Gradients of the Second-Order Moller-Plesset Energy Using Cholesky Decompositions
    Bostrom, Jonas
    Veryazov, Valera
    Aquilante, Francesco
    Pedersen, Thomas Bondo
    Lindh, Roland
    INTERNATIONAL JOURNAL OF QUANTUM CHEMISTRY, 2014, 114 (05) : 321 - 327
  • [4] Explicitly correlated second-order Moller-Plesset methods with auxiliary basis sets
    Klopper, W
    Samson, CCM
    JOURNAL OF CHEMICAL PHYSICS, 2002, 116 (15): : 6397 - 6410
  • [5] Pair natural orbitals in explicitly correlated second-order moller-plesset theory
    Tew, David P.
    Haettig, Christof
    INTERNATIONAL JOURNAL OF QUANTUM CHEMISTRY, 2013, 113 (03) : 224 - 229
  • [6] Analytical energy gradients in second-order Moller-Plesset perturbation theory for extended systems
    Hirata, S
    Iwata, S
    JOURNAL OF CHEMICAL PHYSICS, 1998, 109 (11): : 4147 - 4155
  • [7] Communications: Explicitly correlated second-order Moller-Plesset perturbation method for extended systems
    Shiozaki, Toru
    Hirata, So
    JOURNAL OF CHEMICAL PHYSICS, 2010, 132 (15):
  • [8] Eliminating the domain error in local explicitly correlated second-order Moller-Plesset perturbation theory
    Werner, Hans-Joachim
    JOURNAL OF CHEMICAL PHYSICS, 2008, 129 (10):
  • [9] Explicitly correlated second-order Moller-Plesset perturbation theory employing pseudospectral numerical quadratures
    Bokhan, Denis
    Trubnikov, Dmitrii N.
    JOURNAL OF CHEMICAL PHYSICS, 2012, 136 (20):
  • [10] Local explicitly correlated second-order Moller-Plesset perturbation theory with pair natural orbitals
    Tew, David P.
    Helmich, Benjamin
    Haettig, Christof
    JOURNAL OF CHEMICAL PHYSICS, 2011, 135 (07):