Dynamic restoration and crystallographic texture of a friction-stir processed Al-Mg-SiC surface nanocomposite

被引:28
作者
Khodabakhshi, F. [1 ]
Nosko, M. [2 ]
Gerlich, A. P. [3 ]
机构
[1] Univ Tehran, Coll Engn, Sch Met & Mat Engn, POB 11155-4563, Tehran, Iran
[2] Slovak Acad Sci, Inst Mat & Machine Mech, Bratislava, Slovakia
[3] Univ Waterloo, Dept Mech & Mechatron Engn, Waterloo, ON, Canada
关键词
Friction-stir processing; Al-Mg alloy; SiC nanoparticles; nanocomposite; dynamic restoration; crystallographic texture; ALUMINUM-MAGNESIUM ALLOY; MATRIX HYBRID NANOCOMPOSITE; MICROSTRUCTURAL CHARACTERISTICS; MECHANICAL-PROPERTIES; RECRYSTALLIZATION; FABRICATION; INCLUSIONS; COMPONENTS; EVOLUTION; BEHAVIOR;
D O I
10.1080/02670836.2018.1490858
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In this study, SiC nanoparticles (similar to 50 nm, 3 vol%) are homogenously incorporated within an Al-Mg alloy metal matrix during multi-step friction-stir processing (FSP) to fabricate an Al-matrix surface nanocomposite. A fundamental understanding is developed, correlating microstructural features and crystallographic textural components in the context of the material flow pattern and operative dynamic restoration phenomena using electron backscattering diffraction and high resolution-transmission electron microscopy analysis. The annealed base metal does not contain any preferred orientation and its texture is completely random. Incorporation of SiC nanoparticles via FSP results in significant grain structural refinement down to the size of similar to 1.4 mu m and changing the textural component towards the Goss/Cubic and P1/P2 dominant fibre components in the centre of stirred zone.
引用
收藏
页码:1773 / 1791
页数:19
相关论文
共 38 条
[1]   Transformation and Deformation Texture Study in Friction Stir Processed API X80 Pipeline Steel [J].
Abbasi, Majid ;
Nelson, Tracy W. ;
Sorensen, Carl D. .
METALLURGICAL AND MATERIALS TRANSACTIONS A-PHYSICAL METALLURGY AND MATERIALS SCIENCE, 2012, 43A (13) :4940-4946
[2]   Microstructure, crystallographic texture and mechanical properties of friction stir welded AA2017A [J].
Ahmed, M. M. Z. ;
Wynne, B. P. ;
Rainforth, W. M. ;
Threadgill, P. L. .
MATERIALS CHARACTERIZATION, 2012, 64 :107-117
[3]  
[Anonymous], 1999, ANN BOOK ASTM STAND, V03.01
[4]  
[Anonymous], 2002, E105296 ASTM INT
[5]  
Benedyk JC, 2010, WOODHEAD PUBL MATER, P79, DOI 10.1533/9781845697822.1.79
[6]   Texture development in friction stir welds [J].
Fonda, R. W. ;
Knipling, K. E. .
SCIENCE AND TECHNOLOGY OF WELDING AND JOINING, 2011, 16 (04) :288-294
[7]   Grain Growth Behavior and Hall-Petch Strengthening in Friction Stir Processed Al 5059 [J].
Izadi, Hossein ;
Sandstrom, Rolf ;
Gerlich, Adrian P. .
METALLURGICAL AND MATERIALS TRANSACTIONS A-PHYSICAL METALLURGY AND MATERIALS SCIENCE, 2014, 45A (12) :5635-5644
[8]   Continuous dynamic recrystallization during friction stir welding of high strength aluminum alloys [J].
Jata, KV ;
Semiatin, SL .
SCRIPTA MATERIALIA, 2000, 43 (08) :743-749
[9]   Effects of graphene nano-platelets (GNPs) on the microstructural characteristics and textural development of an Al-Mg alloy during friction stir processing [J].
Khodabakhshi, F. ;
Nosko, M. ;
Gerlich, A. P. .
SURFACE & COATINGS TECHNOLOGY, 2018, 335 :288-305
[10]   Reactive friction-stir processing of nanocomposites: effects of thermal history on microstructure-mechanical property relationships [J].
Khodabakhshi, F. ;
Kokabi, A. H. ;
Simchi, A. .
MATERIALS SCIENCE AND TECHNOLOGY, 2017, 33 (15) :1776-1789