Bacteria Classification using Image Processing and Deep learning

被引:14
作者
Treebupachatsakul, Treesukon [1 ]
Poomrittigul, Suvit [2 ]
机构
[1] King Mongkuts Inst Technol Ladkrabang, Dept Biomed Engn, Bangkok, Thailand
[2] Pathumwan Inst Technol, Dept Software Engn & Informat Syst, Bangkok, Thailand
来源
2019 34TH INTERNATIONAL TECHNICAL CONFERENCE ON CIRCUITS/SYSTEMS, COMPUTERS AND COMMUNICATIONS (ITC-CSCC 2019) | 2019年
关键词
Bacteria recognition; Image processing; Deep learning; Image classification;
D O I
10.1109/itc-cscc.2019.8793320
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
An automizing process for bacteria recognition becomes attractive to reduce the analyzing time and increase the accuracy of diagnostic process. This research study possibility to use image classification and deep learning method for classify genera of bacteria. We propose the implementation method of bacteria recognition system using Python programing and the Keras API with TensorFlow Machine Learning framework. The implementation results have confirmed that bacteria images from microscope are able to recognize the genus of bacterium. The experimental results compare the deep learning methodology for accuracy in bacteria recognition standard resolution image use case. Proposed method can be applied the high-resolution datasets till standard resolution datasets for prediction bacteria type. However, this first study is limited to only two genera of bacteria.
引用
收藏
页码:499 / 501
页数:3
相关论文
共 4 条
[1]   Gradient-based learning applied to document recognition [J].
Lecun, Y ;
Bottou, L ;
Bengio, Y ;
Haffner, P .
PROCEEDINGS OF THE IEEE, 1998, 86 (11) :2278-2324
[2]  
Lim Kitaek, 2013, Journal of Biosystems Engineering, V38, P55
[3]   Pattern Recognition Software and Techniques for Biological Image Analysis [J].
Shamir, Lior ;
Delaney, John D. ;
Orlov, Nikita ;
Eckley, D. Mark ;
Goldberg, Ilya G. .
PLOS COMPUTATIONAL BIOLOGY, 2010, 6 (11)
[4]   Deep learning approach to bacterial colony classification [J].
Zielinski, Bartosz ;
Plichta, Anna ;
Misztal, Krzysztof ;
Spurek, Przemyslaw ;
Brzychczy-Wloch, Monika ;
Ochonska, Dorota .
PLOS ONE, 2017, 12 (09)