Hyperbolicity ray graph and quasi-morphisms on a large modular group

被引:23
作者
Bavard, Juliette [1 ]
机构
[1] Univ Paris 06, IMJ PRG, 4 Pl Jussieu, F-75252 Paris 05, France
关键词
MAPPING CLASS-GROUPS; BOUNDED COHOMOLOGY; HOMEOMORPHISMS; CURVES;
D O I
10.2140/gt.2016.20.491
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The mapping class group Gamma of the complement of a Cantor set in the plane arises naturally in dynamics. We show that the ray graph, which is the analog of the complex of curves for this surface of infinite type, has infinite diameter and is hyperbolic. We use the action of Gamma on this graph to find an explicit non trivial quasimorphism on Gamma and to show that this group has infinite dimensional second bounded cohomology. Finally we give an example of a hyperbolic element of Gamma with vanishing stable commutator length. This carries out a program proposed by Danny Calegari.
引用
收藏
页码:491 / 535
页数:45
相关论文
共 23 条
[1]  
Atiyah MF., 1969, Inst. Hautes Etudes Sci. Publ. Math., V37, P5
[2]   SURFACES AND BOUNDED COHOMOLOGY [J].
BARGE, J ;
GHYS, E .
INVENTIONES MATHEMATICAE, 1988, 92 (03) :509-526
[3]  
Bavard C., 1991, ENSEIGN MATH, V37, P109
[4]   Construction of curious minimal uniquely ergodic homeomorphisms on manifolds:: the Denjoy-Rees technique [J].
Beguin, Francois ;
Crovisier, Sylvain ;
Le Roux, Frederic .
ANNALES SCIENTIFIQUES DE L ECOLE NORMALE SUPERIEURE, 2007, 40 (02) :251-308
[5]  
Bestvina M, 2013, PREPRINT
[6]   Bounded cohomology of subgroups of mapping class groups [J].
Bestvina, Mladen ;
Fujiwara, Koji .
GEOMETRY & TOPOLOGY, 2002, 6 :69-89
[7]  
Bridson M. R., 1999, GRUND MATH WISS, V319, DOI DOI 10.1007/978-3-662-12494-9
[8]  
BROOKS R, 1981, ANN MATH STUD, P53
[9]  
Burger M., 1999, J EUR MATH SOC, V1, P199, DOI DOI 10.1007/S100970050007
[10]  
Calegari D., 2004, Geometry Topology Monographs, V7, P431