Si@C Microsphere Composite with Multiple Buffer Structures for High-Performance Lithium-Ion Battery Anodes

被引:29
|
作者
Li, Yankai [1 ]
Liu, Wenbo [2 ]
Long, Zhi [1 ]
Xu, Pengyuan [1 ]
Sun, Yang [1 ]
Zhang, Xiaokang [1 ]
Ma, Shuhua [1 ,3 ]
Jiang, Ning [4 ]
机构
[1] Univ Jinan, Sch Chem & Chem Engn, Shandong Prov Key Lab Fluorine Chem Mat, Jinan 250022, Shandong, Peoples R China
[2] Zhuhai Smoothway Elect Mat Co Ltd, Zhuhai 519050, Peoples R China
[3] Wujie Sci & Technol Co Ltd, Jining 272300, Peoples R China
[4] Anhui Tianheren Nano New Mat Investment Co Ltd, Hefei 231600, Anhui, Peoples R China
关键词
batteries; electrode materials; energy storage; microspheres; multiple buffer structures; silicon; REDUCED GRAPHENE OXIDE; MESOPOROUS CARBON; SPRAY-PYROLYSIS; SILICON; DESIGN; PROMISES; SHEETS; LAYER;
D O I
10.1002/chem.201801417
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
In this work, a Si@C microsphere composite with multiple buffer structures is prepared by hydrothermal treatment to solve the fatal drawbacks of serious pulverization and low electronic conductivity of Si anodes. By virtue of ferric citrate being the carefully chosen coating carbon source, the silicon nanoparticles with a SiOx layer are encapsulated by the homogeneous mesoporous carbon layer. The SiOx layer with appropriate toughness can primarily suppress the volume expansion of silicon. The plentiful mesopores in the carbon layer and the framework formed by carbon nanotubes with good mechanical strength can effectively buffer and accommodate the volume change of silicon, and greatly improve the infiltration of the electrolyte to the anode. Meanwhile, the mesoporous carbon and carbon nanotube network also enhance the conductivity of the composite. Therefore, the Si@C electrodes exhibit a high initial charge/discharge capacity of 2956/4197 mAh g(-1) at a current density of 0.42 A g(-1), excellent rate capability, and outstanding cycle performance up to 800 cycles by virtue of the multiple buffer structures.
引用
收藏
页码:12912 / 12919
页数:8
相关论文
共 50 条
  • [21] An effective coupling of nanostructured Si and gel polymer electrolytes for high-performance lithium-ion battery anodes
    Bok, Taesoo
    Cho, Sung-Ju
    Choi, Sinho
    Choi, Keun-Ho
    Park, Hyungmin
    Lee, Sang-Young
    Park, Soojin
    RSC ADVANCES, 2016, 6 (09): : 6960 - 6966
  • [22] Fe3O4 Contribution to Core–Shell Structured Si@C Nanospheres as High-Performance Anodes for Lithium-Ion Batteries
    Yuxuan Zheng
    Junkai Ma
    Xinping He
    Yongping Gan
    Jun Zhang
    Yang Xia
    Wenkui Zhang
    Hui Huang
    Journal of Electronic Materials, 2023, 52 : 1730 - 1739
  • [23] Hierarchical porous silicon structures with extraordinary mechanical strength as high-performance lithium-ion battery anodes
    Jia, Haiping
    Li, Xiaolin
    Song, Junhua
    Zhang, Xin
    Luo, Langli
    He, Yang
    Li, Binsong
    Cai, Yun
    Hu, Shenyang
    Xiao, Xingcheng
    Wang, Chongmin
    Rosso, Kevin M.
    Yi, Ran
    Patel, Rajankumar
    Zhang, Ji-Guang
    NATURE COMMUNICATIONS, 2020, 11 (01)
  • [24] Hierarchical porous silicon structures with extraordinary mechanical strength as high-performance lithium-ion battery anodes
    Haiping Jia
    Xiaolin Li
    Junhua Song
    Xin Zhang
    Langli Luo
    Yang He
    Binsong Li
    Yun Cai
    Shenyang Hu
    Xingcheng Xiao
    Chongmin Wang
    Kevin M. Rosso
    Ran Yi
    Rajankumar Patel
    Ji-Guang Zhang
    Nature Communications, 11
  • [25] CuO nanorods/graphene nanocomposites for high-performance lithium-ion battery anodes
    Wang, Qi
    Zhao, Jun
    Shan, Wanfei
    Xia, Xinbei
    Xing, Lili
    Xue, Xinyu
    JOURNAL OF ALLOYS AND COMPOUNDS, 2014, 590 : 424 - 427
  • [26] High-performance and flexible lithium-ion battery anodes using modified buckypaper
    Kim, Hyungjoo
    Ri, Vitalii
    Koo, Jahun
    Kim, Chunjoong
    Shin, Hosun
    JOURNAL OF ALLOYS AND COMPOUNDS, 2023, 930
  • [27] Laser structured Cu foil for high-performance lithium-ion battery anodes
    Zhang, Ningxin
    Zheng, Yijing
    Trifonova, Atanaska
    Pfleging, Wilhelm
    JOURNAL OF APPLIED ELECTROCHEMISTRY, 2017, 47 (07) : 829 - 837
  • [28] A review on structuralized current collectors for high-performance lithium-ion battery anodes
    Yang, Yang
    Yuan, Wei
    Zhang, Xiaoqing
    Ke, Yuzhi
    Qiu, Zhiqiang
    Luo, Jian
    Tang, Yong
    Wang, Chun
    Yuan, Yuhang
    Huang, Yao
    APPLIED ENERGY, 2020, 276 (276)
  • [29] Laser structured Cu foil for high-performance lithium-ion battery anodes
    Ningxin Zhang
    Yijing Zheng
    Atanaska Trifonova
    Wilhelm Pfleging
    Journal of Applied Electrochemistry, 2017, 47 : 829 - 837
  • [30] A Nanocomposite of Si@C Nanosphere and Hollow Porous Co9S8/C Polyhedron as High-Performance Anode for Lithium-Ion Battery
    Yuan, Chao
    Lu, Dujiang
    An, Yongling
    Bian, Xiufang
    CHEMELECTROCHEM, 2020, 7 (21): : 4423 - 4430