The Relationship between Microstructure and Fracture Behavior of TiAl/Ti2AlNb SPDB Joint with High Temperature Titanium Alloy Interlayers

被引:2
|
作者
Liao, Minxing [1 ]
Tian, Hao [1 ]
Zhao, Lei [2 ]
Zhang, Boxian [3 ]
He, Jianchao [1 ]
机构
[1] Harbin Inst Technol, Inst Special Environm Phys Sci, Shenzhen 518055, Peoples R China
[2] Cent Iron & Steel Res Inst, Dept Funct Mat Res, Beijing 100081, Peoples R China
[3] AVIC Mfg Technol Inst, Aeronaut Key Lab Welding & Joining Technol, Beijing 100024, Peoples R China
基金
中国国家自然科学基金;
关键词
spark plasma diffusion bonding; TiAl; microstructure; mechanical properties; fracture; GAMMA-TIAL ALLOYS; MECHANICAL-PROPERTIES; PURE TI; DEFORMATION; EVOLUTION; PHASE; FOIL; NB;
D O I
10.3390/ma15144849
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
In this paper, spark plasma diffusion bonding technology was employed to join TiAl and Ti2AlNb with high temperature titanium alloy interlayer at 950 degrees C/10kN/60 min, then following furnace cooling at cooling rate up to 100 degrees C/min. After welding, the joint was aging heat-treated at 800 degrees C for 24 h. The microstructure and the elements diffusion of the TiAl/Ti2AlNb joint was analyzed by field emission scanning electron microscopy (FESEM) with EDS. Moreover, the tensile properties of the joint were tested at room temperature, 650 degrees C, and 750 degrees C. The results show that the spark plasma diffusion bonding formed a high quality TiAl/Ti2AlNb joint without microcracks or microvoids, while also effectively protecting the base metal. Significant differences in the microstructure of the joint appeared from TiAl side to Ti2AlNb side: TiAl BM (Base Metal) -> DP(Duplex) and NG (Near-Gamma) -> alpha(2)-phase matrix with needle-like alpha-phase -> bulk alpha(2)-phase -> needle-like alpha-phase -> metastable beta-phase -> Ti2AlNb BM. After heat treatment at 800 degrees C for 24 h, the microstructure of the TiAl side and the interlayer region did not change, but the density and size of the needle-like alpha-phase in region 3 increased slightly. The microstructure of Ti2AlNb near the weld changed obviously, and a large number of fine O phases are precipitated from the metastable beta phase matrix after heat treatment. Except for the Ti2AlN near-interface region, the effect of heat treatment on the microstructure of the joint is not significant. The microhardness of the joint is in the shape of a mountain peak. The maximum microhardness at the interface is above 500 HV, and it is significantly reduced to 400 HV after heat treatment. The fracture of the joint occurred at the interface at room temperature, 650 degrees C, and 750 degrees C. with the tensile strength 450 MPa, 540 MPa, and 471 Mpa, respectively, and mainly showing brittle fracture.
引用
收藏
页数:14
相关论文
共 50 条
  • [31] Effect of Er2O3 and Y2O3 on microstructure and mechanical properties of Ti2AlNb alloy
    Shi, Guohao
    Chen, Yuyong
    Du, Zhiming
    Zhang, Yu
    JOURNAL OF ALLOYS AND COMPOUNDS, 2025, 1010
  • [32] Gradient microstructure response in different phases of Ti2AlNb alloy with laser shock peening
    He, Dongsheng
    Li, Liuhe
    Chi, Jiaxuan
    Zhang, Hepeng
    Zhang, Gongxuan
    He, Guangzhi
    Yan, Jianfeng
    Zhang, Hongqiang
    Guo, Wei
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2023, 862
  • [33] Interface characteristic and mechanical performance of TiAl/Ti2AlNb diffusion bonding joint with pure Ti interlayer
    Zhu, Lei
    Tang, Bin
    Ding, Ming-Xuan
    Liu, Yan
    Chen, Xiao-Fei
    Yan, Shao-Peng
    Li, Jin-Shan
    RARE METALS, 2020, 39 (12) : 1402 - 1412
  • [34] Crystal Plasticity Finite Element Modeling on High Temperature Low Cycle Fatigue of Ti2AlNb Alloy
    Wang, Yanju
    Zhang, Zhao
    Wang, Xinhao
    Yang, Yanfeng
    Lan, Xiang
    Li, Heng
    APPLIED SCIENCES-BASEL, 2023, 13 (02):
  • [35] Effects of solid solution and aging treatment on the microstructure evolution of Ti2AlNb alloy
    Shang, Zhao
    Niu, Huijun
    Wang, Ai
    Lei, Tuanying
    Liu, Gang
    Zhong, Lisheng
    JOURNAL OF MATERIALS RESEARCH AND TECHNOLOGY-JMR&T, 2024, 30 : 1095 - 1104
  • [36] Post-bonded compressive behavior and processing map of TiAl/Ti2AlNb joint along the bonding interface based on a composite model
    Zhu, Lei
    Tang, Bin
    Wei, Beibei
    Ding, Mingxuan
    Liu, Yan
    Zheng, Guoming
    Li, Jinshan
    MATERIALS CHEMISTRY AND PHYSICS, 2021, 271
  • [37] The relationship between microstructure, crystallographic orientation, and fracture behavior in a high strength ferrous alloy
    Yuan, G.
    Hu, W.
    Wang, X.
    Kang, J.
    Zhao, J.
    Di, H.
    Misra, R. D. K.
    Wang, G.
    JOURNAL OF ALLOYS AND COMPOUNDS, 2017, 695 : 526 - 539
  • [38] Microstructure and mechanical properties of continuous drive friction welded Ti2AlNb alloy under different rotational rates
    Bu, Zhi-qiang
    Ma, Xiu-ping
    Wu, Jia-yun
    Lu, Zhen
    Chen, Hu
    Li, Jin-fu
    TRANSACTIONS OF NONFERROUS METALS SOCIETY OF CHINA, 2024, 34 (10) : 3221 - 3232
  • [39] Microstructure and mechanical properties of Ti2AlNb diffusion bonding using multi-phase refractory high-entropy alloy interlayer
    Du, Yajie
    Xiong, Jiangtao
    Wen, Guodong
    Li, Jinglong
    Jin, Feng
    Zhang, Hao
    Wang, Guilong
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2022, 836
  • [40] Investigation of interfacial microstructure and mechanical performance within TiAl to Ti2AlNb alloy vacuum diffusion bonded joints
    Huang, Libing
    Lu, Yaxin
    Li, Jiachen
    Li, Chao
    Li, Peng
    Zhao, Dongsheng
    Shi, Shuyan
    Liu, Xiaoying
    Ma, Xiong
    Dong, Honggang
    INTERMETALLICS, 2024, 174