The Relationship between Microstructure and Fracture Behavior of TiAl/Ti2AlNb SPDB Joint with High Temperature Titanium Alloy Interlayers

被引:2
|
作者
Liao, Minxing [1 ]
Tian, Hao [1 ]
Zhao, Lei [2 ]
Zhang, Boxian [3 ]
He, Jianchao [1 ]
机构
[1] Harbin Inst Technol, Inst Special Environm Phys Sci, Shenzhen 518055, Peoples R China
[2] Cent Iron & Steel Res Inst, Dept Funct Mat Res, Beijing 100081, Peoples R China
[3] AVIC Mfg Technol Inst, Aeronaut Key Lab Welding & Joining Technol, Beijing 100024, Peoples R China
基金
中国国家自然科学基金;
关键词
spark plasma diffusion bonding; TiAl; microstructure; mechanical properties; fracture; GAMMA-TIAL ALLOYS; MECHANICAL-PROPERTIES; PURE TI; DEFORMATION; EVOLUTION; PHASE; FOIL; NB;
D O I
10.3390/ma15144849
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
In this paper, spark plasma diffusion bonding technology was employed to join TiAl and Ti2AlNb with high temperature titanium alloy interlayer at 950 degrees C/10kN/60 min, then following furnace cooling at cooling rate up to 100 degrees C/min. After welding, the joint was aging heat-treated at 800 degrees C for 24 h. The microstructure and the elements diffusion of the TiAl/Ti2AlNb joint was analyzed by field emission scanning electron microscopy (FESEM) with EDS. Moreover, the tensile properties of the joint were tested at room temperature, 650 degrees C, and 750 degrees C. The results show that the spark plasma diffusion bonding formed a high quality TiAl/Ti2AlNb joint without microcracks or microvoids, while also effectively protecting the base metal. Significant differences in the microstructure of the joint appeared from TiAl side to Ti2AlNb side: TiAl BM (Base Metal) -> DP(Duplex) and NG (Near-Gamma) -> alpha(2)-phase matrix with needle-like alpha-phase -> bulk alpha(2)-phase -> needle-like alpha-phase -> metastable beta-phase -> Ti2AlNb BM. After heat treatment at 800 degrees C for 24 h, the microstructure of the TiAl side and the interlayer region did not change, but the density and size of the needle-like alpha-phase in region 3 increased slightly. The microstructure of Ti2AlNb near the weld changed obviously, and a large number of fine O phases are precipitated from the metastable beta phase matrix after heat treatment. Except for the Ti2AlN near-interface region, the effect of heat treatment on the microstructure of the joint is not significant. The microhardness of the joint is in the shape of a mountain peak. The maximum microhardness at the interface is above 500 HV, and it is significantly reduced to 400 HV after heat treatment. The fracture of the joint occurred at the interface at room temperature, 650 degrees C, and 750 degrees C. with the tensile strength 450 MPa, 540 MPa, and 471 Mpa, respectively, and mainly showing brittle fracture.
引用
收藏
页数:14
相关论文
共 50 条
  • [21] Influence of Annealing on Microstructure and Tensile Properties of Electron Beam Weldment of Powder Metallurgy Ti2AlNb Alloy
    Yin, Xuchen
    Chen, Zhiyong
    Wang, Qingjiang
    Liu, Jianrong
    Li, Wenhui
    Deng, Hao
    Luo, Hengjun
    RARE METAL MATERIALS AND ENGINEERING, 2024, 53 (08) : 2293 - 2300
  • [22] Quasi cleavage fracture of the bimodal size lamellar O phase microstructure of a Ti2AlNb based alloy
    Zheng, Youping
    Zeng, Weidong
    Li, Dong
    Ma, Haoyuan
    Zhang, Penghui
    Ma, Xiong
    JOURNAL OF ALLOYS AND COMPOUNDS, 2019, 799 : 267 - 278
  • [23] Effect of welding temperature on microstructure and mechanical properties of TiAl/Ti2AlNb spark plasma diffusion welded joint
    Mingqian Ma
    Chunhuan Chen
    Lu Chai
    Yanlong Lv
    Jinbao Hou
    Boxian Zhang
    Welding in the World, 2022, 66 : 985 - 994
  • [24] Investigation of the Oxidation Behavior of Orthorhombic Ti2AlNb Alloy
    Malecka, Joanna
    JOURNAL OF MATERIALS ENGINEERING AND PERFORMANCE, 2015, 24 (05) : 1834 - 1840
  • [25] Microstructure evolution and mechanical properties of linear friction welded Ti2AlNb alloy
    Chen, X.
    Xie, F. Q.
    Ma, T. J.
    Li, W. Y.
    Wu, X. Q.
    JOURNAL OF ALLOYS AND COMPOUNDS, 2015, 646 : 490 - 496
  • [26] Microstructure and Mechanical Properties of Electron Beam Welded Joints of Ti2AlNb Alloy
    Zhiqiang Bu
    Jiayun Wu
    Xiuping Ma
    Zeguo Li
    Jinfu Li
    Journal of Materials Engineering and Performance, 2023, 32 : 5329 - 5337
  • [27] Microstructure and properties of pulse current promoted diffusion welding TiAl/Ti2AlNb joint with Ti69NbCrZrX interlayer
    Lyu Yanlong
    Fan Jiafeng
    Hou Jinbao
    Chai Lu
    Tao Jun
    CAILIAO GONGCHENG-JOURNAL OF MATERIALS ENGINEERING, 2024, 52 (12): : 143 - 150
  • [28] Microstructure determined fracture behavior of a high Nb containing TiAl alloy
    Wu, Zeen
    Hu, Rui
    Zhang, Tiebang
    Zhou, Huan
    Kou, Hongchao
    Li, Jinshan
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2016, 666 : 297 - 304
  • [29] Microstructure evolution and mechanical properties of Ti2AlNb/TiAl brazed joint using newly-developed Ti-Ni-Nb-Zr filler alloy
    Ren, Xinyu
    Ren, Haishui
    Shang, Yonglai
    Xiong, Huaping
    Zhang, Kai
    Zheng, Jinghua
    Liu, Dong
    Lin, Jianguo
    Jiang, Jun
    PROGRESS IN NATURAL SCIENCE-MATERIALS INTERNATIONAL, 2020, 30 (03) : 410 - 416
  • [30] Microstructure and mechanical properties of nanostructured intermetallic alloy based on Ti2AlNb
    Shagiev, M. R.
    Salishchev, G. A.
    NANOMATERIALS BY SEVERE PLASTIC DEFORMATION IV, PTS 1 AND 2, 2008, 584-586 : 153 - 158