Characterization of probability measures through the canonically associated interacting Fock spaces

被引:38
作者
Accardi, L [1 ]
Kuo, HH
Stan, A
机构
[1] Univ Roma Tor Vergata, Ctr Vito Volterra, I-00133 Rome, Italy
[2] Louisiana State Univ, Dept Math, Baton Rouge, LA 70803 USA
[3] Univ Rochester, Dept Math, Rochester, NY 14627 USA
基金
美国国家科学基金会;
关键词
probability measure; orthogonal polynomials; polynomially symmetric; polynomially factorizable;
D O I
10.1142/S0219025704001736
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We continue our program of coding the whole information of a probability measure into a set of commutation relations canonically associated to it by presenting some characterization theorems for the symmetry and factorizability of a probability measure on R-d in terms of the canonically associated interacting creation, annihilation and number operators.
引用
收藏
页码:485 / 505
页数:21
相关论文
共 6 条
[1]   Interacting Fock spaces and Gaussianization of probability measures [J].
Accardi, L ;
Bozejko, M .
INFINITE DIMENSIONAL ANALYSIS QUANTUM PROBABILITY AND RELATED TOPICS, 1998, 1 (04) :663-670
[2]   The Wigner semi-circle law in quantum electro dynamics [J].
Accardi, L ;
Lu, YG .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1996, 180 (03) :605-632
[3]  
Gross L., 1965, PROC 5 BERKELEY S MA, V2, P31
[4]  
Segal I., 1956, T AM MATH SOC, V81, P106, DOI 10.1090/S0002-9947-1956-0076317-8
[5]   The homogeneous chaos [J].
Wiener, N .
AMERICAN JOURNAL OF MATHEMATICS, 1938, 60 :897-936
[6]  
[No title captured]