Diffusion limit of a semiconductor Boltzmann-Poisson system

被引:45
作者
Masmoudi, Nader
Tayeb, Mohamed Lazhar
机构
[1] NYU, Courant Inst Math Sci, New York, NY 10012 USA
[2] Fac Sci Tunis, Dept Math, El Manar 1060, Tunisia
关键词
kinetic transport equations; semiconductor Boltzmann-Poisson system; drift-diffusion model; entropy dissipation; moment method; velocity averaging lemma; renormalized solution; INCOMPRESSIBLE FLUID-MECHANICS; BOUNDARY VALUE-PROBLEM; KINETIC-EQUATIONS; APPROXIMATION; COMPACTNESS; REGULARITY;
D O I
10.1137/050630763
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The paper deals with the diffusion limit of the initial-boundary value problem for the multidimensional semiconductor Boltzmann-Poisson system. Here, we generalize the onedimensional results obtained in [5] to the case of several dimensions using global renormalized solutions. The method of moments and a velocity averaging lemma are used to prove the convergence of the renormalized solutions to the semiconductor Boltzmann-Poisson system towards a global weak solution of the drift-diffusion-Poisson model.
引用
收藏
页码:1788 / 1807
页数:20
相关论文
共 30 条