Effects of Plasticizer Content and Ceramic Addition on Electrochemical Properties of Cross-Linked Polymer Electrolyte

被引:13
作者
Du, Zhijia [1 ]
Chen, X. Chelsea [2 ]
Sahore, Ritu [1 ]
Wu, Xianyang [1 ]
Li, Jianlin [1 ]
Dudney, Nancy J. [2 ]
机构
[1] Oak Ridge Natl Lab, Electrificat & Energy Infrastruct Div, POB 2009, Oak Ridge, TN 37831 USA
[2] Oak Ridge Natl Lab, Chem Sci Div, POB 2009, Oak Ridge, TN 37831 USA
关键词
polymer electrolyte; UV curing; lithium metal; solid state battery; composite electrolyte; COMPOSITE ELECTROLYTES; IONIC-CONDUCTIVITY; BATTERIES; FABRICATION; TRANSPORT; MATRIX;
D O I
10.1149/1945-7111/abebf6
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
The development of a safe electrolyte is the key to improving energy density for next generation lithium batteries. In this work, UV-crosslinked poly(ethylene oxide) (PEO) -based polymer and composite electrolytes are systematically investigated on their ionic conductivity, mechanical and electrochemical properties. The polymer electrolytes are plasticized with non-flammable linear short-chain PEO. In the composite electrolytes, a doped lithium aluminum titanium phosphate (LATP) ceramic, LICGC (TM), is used as the ceramic filler. It is found that the addition of the plasticizer leads to a tradeoff between ion transport and mechanical properties. In contrast, the addition of ceramic fillers improves both the ionic conductivity and mechanical properties. The sample with 20 wt% of LICGC (TM) shows a conductivity of similar to 0.6 mS cm(-1) at 50 degrees C. This sample also demonstrates much longer cycle life than the neat polymer electrolyte in Li platting/stripping test with a capacity of 1 mAh cm(-2). A full cell made with this composite electrolyte against Li metal anode and high voltage LiNi0.6Mn0.2Co0.2O2 cathode shows 94% capacity retention after 30 cycles, compared to 58% capacity retention with the neat polymer electrolyte. These results demonstrate that a hybrid of polymer/ceramic/non-flammable plasticizer is a promising path to high energy density, high voltage lithium batteries.
引用
收藏
页数:7
相关论文
共 60 条
[1]   Highly conductive PEO-like polymer electrolytes [J].
Abraham, KM ;
Jiang, Z ;
Carroll, B .
CHEMISTRY OF MATERIALS, 1997, 9 (09) :1978-1988
[2]   The plastic-crystalline phase of succinonitrile as a universal matrix for solid-state ionic conductors [J].
Alarco, PJ ;
Abu-Lebdeh, Y ;
Abouimrane, A ;
Armand, M .
NATURE MATERIALS, 2004, 3 (07) :476-481
[3]   POLYMER SOLID ELECTROLYTES - AN OVERVIEW [J].
ARMAND, M .
SOLID STATE IONICS, 1983, 9-10 (DEC) :745-754
[4]   Cross-Linked Solid Polymer Electrolyte for All-Solid-State Rechargeable Lithium Batteries [J].
Ben Youcef, Hicham ;
Garcia-Calvo, Oihane ;
Lago, Nerea ;
Devaraj, Shanmukaraj ;
Armand, Michel .
ELECTROCHIMICA ACTA, 2016, 220 :587-594
[5]   Improved Li-battery electrolytes by heterogeneous doping of nonaqueous Li-salt solutions [J].
Bhattacharyya, AJ ;
Dollé, M ;
Maier, J .
ELECTROCHEMICAL AND SOLID STATE LETTERS, 2004, 7 (11) :A432-A434
[6]   Poly(ethylene oxide)-based composite solid polymer electrolyte containing Li7La3Zr2O12 and poly(ethylene glycol) dimethyl ether [J].
Cha, Ji Hye ;
Didwal, Pravin N. ;
Kim, Ju Min ;
Chang, Duck Rye ;
Park, Chan-Jin .
JOURNAL OF MEMBRANE SCIENCE, 2020, 595
[7]  
Chen X.C., 2020, CATION DISSOCIATED A
[8]   Study of segmental dynamics and ion transport in polymer-ceramic composite electrolytes by quasi-elastic neutron scattering [J].
Chen, X. Chelsea ;
Sacci, Robert L. ;
Osti, Naresh C. ;
Tyagi, Madhusudan ;
Wang, Yangyang ;
Palmer, Max J. ;
Dudney, Nancy J. .
MOLECULAR SYSTEMS DESIGN & ENGINEERING, 2019, 4 (02) :379-385
[9]   Toward Safe Lithium Metal Anode in Rechargeable Batteries: A Review [J].
Cheng, Xin-Bing ;
Zhang, Rui ;
Zhao, Chen-Zi ;
Zhang, Qiang .
CHEMICAL REVIEWS, 2017, 117 (15) :10403-10473
[10]   Selection of new Kynar-based electrolytes for lithium-ion batteries [J].
Christie, AM ;
Christie, L ;
Vincent, CA .
JOURNAL OF POWER SOURCES, 1998, 74 (01) :77-86